Disjoint Unions and Product Spaces MATH 348

- 1. Describe each of the following spaces
 - (a) $\mathbb{R} \amalg \mathbb{R}$
 - (b) $\{-1\} \amalg \{+1\}$
 - (c) $\mathbb{R} \amalg S^1$
- **2.** Let S and T be topological spaces. Prove that $S \amalg T$ is compact if and only if both S and T are both compact.

3. Under what circumstances is $S \amalg T$ a Hausdorff space? Formulate and prove a statement similar to #2 above.

- 4. Describe each of the following spaces
 - (a) $\mathbb{R} \times S^1$
 - (b) $\mathbb{R} \times S^0$
 - (c) $S^1 \times [1, 2]$
 - (d) $S^1 \times S^1$
- 5. Suppose X is a finite set of n elements and Y is a finite set of m elements.
 - (a) How many elements are there in $X \amalg Y$?
 - (b) How many elements are there in $X \times Y$?
- **6.** For any product space $S \times T$, show that the projection maps $p_1 : S \amalg T \to S$ and $p_2 : S \amalg T \to T$ are continuous.

7. Let S and T be topological spaces. Prove that $S \times T$ is connected if and only if both S and T are both connected.