Bessel's Equation

Math 330

The following ODE is is known as Bessel's differential equation of order $m>0$:

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0
$$

If m is not an integer, then Bessel's equation of order m has two linearly independent solutions denoted $J_{m}(z)$ and $J_{-m}(z)$, with

$$
J_{m}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{m+2 k}}{2^{m+2 k} k!\Gamma(m+k+1)}
$$

where $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$ is the Gamma function. The function $J_{m}(z)$ is the Bessel function of the first kind of order m.

If m is an integer, then $J_{-m}(z)=(-1)^{m} J_{m}(z)$, so these two solutions are not linearly independent. A second solution linearly independent to $J_{m}(z)$ is given by

$$
Y_{m}(z)=\lim _{\alpha \rightarrow m} \frac{J_{\alpha}(z) \cos (\alpha \pi)-J_{-\alpha}(z)}{\sin (\alpha \pi)}
$$

the Bessel function of the second kind of order m.

1. Plot the functions $J_{m}(z)$ and $Y_{m}(z)$ for various m to see the shape of their graphs. What do you observe about these functions?
2. Suppose we impose the boundary conditions $|f(0)|<\infty$ and $f(a)=0$. The condition at $r=0$ is known as a singular boundary condition, and the other boundary condition is imposed at $r=a$. Which of the Bessel functions can satisfy these boundary conditions? What eigenvalues do these boundary conditions determine?
3. The Bessel functions of the first kind satisfy the following orthogonality property:

$$
\int_{0}^{1} J_{m}\left(\sqrt{\lambda_{m p}} r\right) J_{m}\left(\sqrt{\lambda_{m q}} r\right) r d r=0, \quad p \neq q
$$

where $\sqrt{\lambda_{m n}}=z_{m n}$ denotes the nth zero of $J_{m}(z)$. Use Mathematica to confirm this for some specific m, p, and q. (The zeros of J_{m} are transcendental numbers, but Mathematica's function BesselJZero returns approximations of them.)

