Green's Functions for the 2D Poisson Equation

Math 330
We will examine the Poisson equation

$$
-\Delta u=-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y)
$$

which models equilibrium phenomena (such as electrostatic or gravitational potential).
First, recall a few facts from multivariable calculus:

- The gradient of $u(x, y)$ is a vector of partial derivatives: $\nabla u=\left[\begin{array}{l}\partial u / \partial x \\ \partial u / \partial y\end{array}\right]$.
- The divergence of a vector field $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is: $\quad \operatorname{div} \mathbf{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$.
- The divergence theorem says

$$
\iint_{\Omega} \operatorname{div} \mathbf{F} d A=\oint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d s
$$

where \mathbf{F} is a vector field, Ω is a region with boundary $\partial \Omega$, and \mathbf{n} is the outward pointing unit normal vector at each point of $\partial \Omega$.

1. Let $f(x, y)=\delta_{\xi, \eta}$ be the 2 D delta function at $(\xi, \eta) \in \mathbb{R}^{2}$, and let $G_{0}(x, y ; \xi, \eta)$ solve the Poisson equation for this f. Explain why $-\Delta G=0$ for all $(x, y) \neq(\xi, \eta)$.
2. Explain why $G(x, y ; \xi, \eta)$ should really be a function of r alone, where $r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}}$.
3. In this case, we seek a radially-symmetric solution to the 2D Laplace Equation. In polar coordinates, the Laplace equation becomes

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

We want a solution $u(r, \theta)$ that in fact depends only on r.
(a) Simplify the PDE above in the case that $u(r, \theta)=u(r)$.
(b) Find the general solution to $r u^{\prime \prime}(r)+u^{\prime}(r)=0$. Hint: let $v(r)=u^{\prime}(r)$.
4. We now have $G(x, y ; \xi, \eta)=a+b \ln (r)$, where $r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}}$, and we need $-\Delta G=\delta_{\xi, \eta}$. Why can we choose $a=0$?
5. Let D be a disk of radius $\epsilon>0$ centered at (ξ, η), and let $C=\partial D$. Integrate $-\Delta G=\delta_{\xi, \eta}$ over D to solve for b.
6. Write the Green's function for the 2D Poisson equation.

