
Green’s Functions for the 2D Poisson Equation
Math 330

We will examine the Poisson equation

−∆u = −∂2u

∂x2
− ∂2u

∂y2
= f(x, y),

which models equilibrium phenomena (such as electrostatic or gravitational potential).

First, recall a few facts from multivariable calculus:

• The gradient of u(x, y) is a vector of partial derivatives: ∇u =
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∂u/∂y

�
.

• The divergence of a vector field v =
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v2

�
is: div v =
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.

• The divergence theorem says
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where F is a vector field, Ω is a region with boundary ∂Ω, and n is the outward pointing unit
normal vector at each point of ∂Ω.

1. Let f(x, y) = δξ,η be the 2D delta function at (ξ, η) ∈ R2, and let G0(x, y; ξ, η) solve the Poisson
equation for this f . Explain why −∆G = 0 for all (x, y) ̸= (ξ, η).

2. Explain why G(x, y; ξ, η) should really be a function of r alone, where r =
p

(x− ξ)2 + (y − η)2.

3. In this case, we seek a radially-symmetric solution to the 2D Laplace Equation. In polar coordinates,
the Laplace equation becomes
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+
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r2
∂2u

∂θ2
= 0.

We want a solution u(r, θ) that in fact depends only on r.

(a) Simplify the PDE above in the case that u(r, θ) = u(r).



(b) Find the general solution to ru′′(r) + u′(r) = 0. Hint : let v(r) = u′(r).

4. We now have G(x, y; ξ, η) = a + b ln(r), where r =
p
(x− ξ)2 + (y − η)2, and we need −∆G = δξ,η.

Why can we choose a = 0?

5. Let D be a disk of radius ϵ > 0 centered at (ξ, η), and let C = ∂D. Integrate −∆G = δξ,η over D to
solve for b.

6. Write the Green’s function for the 2D Poisson equation.


