Recall: Green's Functions

Given a linear differential operator L, consider $L[u(\vec{x})]=f(\vec{x})$

Green's function G satisfies $L[G(\vec{x})]=\delta_{\xi}(\vec{x})$
Properties:

- G solves the homogeneous diff. eq. $L[G]=0$ at all points $x \neq \xi$
- G satisfies homogeneous boundary conditions
- G is a continuous function of x
- For fixed ξ, the derivative $\frac{\partial G}{\partial x}$ is
 piecewise C^{1}, with a single jump discontinuity at $x=\xi$

General solution to $L[u]=f(x)$ is given by

$$
u(x)=\int_{\mathbb{R}} G(x ; \xi) f(\xi) d \xi
$$

Today: for $(\xi, \eta) \in \mathbb{R}^{2}$, let $\delta_{\xi, x}(x, y)$ be the delta function representing a unit impulse at $(x, y)=(\xi, \eta)$.

$$
\delta_{\xi, \eta}(x, y)=0 \text { if }(x, y) \neq(\xi, \eta) \quad \text { and } \quad \iint_{\mathbb{R}^{2}} \delta_{\xi, \eta}(x, y) d y d x=1
$$

Green's Functions for the 2D Poisson Equation

Math 330
We will examine the Poisson equation

$$
-\Delta u=-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=f(x, y),
$$

which models equilibrium phenomena (such as electrostatic or gravitational potential).
First, recall a few facts from multivariable calculus:

- The gradient of $u(x, y)$ is a vector of partial derivatives: $\nabla u=\left[\begin{array}{l}\partial u / \partial x \\ \partial u / \partial y\end{array}\right]$.
- The divergence of a vector field $\mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ is: $\quad \operatorname{div} \mathbf{v}=\frac{\partial v_{1}}{\partial x}+\frac{\partial v_{2}}{\partial y}$.
- The divergence theorem says

$$
\iint_{\Omega} \operatorname{div} \mathbf{F} d A=\oint_{\partial \Omega} \mathbf{F} \cdot \mathbf{n} d s
$$

where \mathbf{F} is a vector field, Ω is a region with boundary $\partial \Omega$, and \mathbf{n} is the outward pointing unit normal vector at each point of $\partial \Omega$.

1. Let $f(x, y)=\delta_{\xi, \eta}$ be the 2 D delta function at $(\xi, \eta) \in \mathbb{R}^{2}$, and let $G(x, y ; \xi, \eta)$ solve the Poisson equation for this f. Explain why $-\Delta G=0$ for all $(x, y) \neq(\xi, \eta)$.

$$
\text { We are solving }-\Delta G(x, y ; \xi, \eta)=\delta_{\xi, \eta}(x, y)= \begin{cases}0 & \text { if }(x, y) \neq(\xi, \eta) \\ ? & \text { if }(x, y)=(\xi, \eta)\end{cases}
$$

2. Explain why $G(x, y ; \xi, \eta)$ should really be a function of r alone, where $r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}}$.

The Poisson eq. models uniform medium,
and the effect of a unit impulse
depends only on distance, not direction.
3. In this case, we seek a radially-symmetric solution to the 2D Laplace Equation. In polar coordinates, the Laplace equation becomes

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

$$
x=r \cos \theta
$$

$$
y=r \sin \theta
$$

We want a solution $u(r, \theta)$ that in fact depends only on r.
(a) Simplify the PDE above in the case that $u(r, \theta)=u(r)$.

$$
\begin{array}{ll}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \cdot \frac{\partial u}{\partial r}=0 \quad \text { or } u^{\prime \prime}(r)+\frac{1}{r} u^{\prime}(r)=0 \\
\text { or } r \cdot u^{\prime \prime}(r)+u^{\prime}(r)=0
\end{array}
$$

(b) Find the general solution to $r u^{\prime \prime}(r)+u^{\prime}(r)=0$. Hint: let $v(r)=u^{\prime}(r)$.

$$
\begin{aligned}
& r \cdot \frac{d v}{d r}+v=0 \\
& \frac{d v}{d r}=\frac{-v}{r} \\
& \int \frac{d v}{v}=\int-\frac{d r}{r} \\
& \ln |v|=-\ln |r|+C=b e^{\ln \frac{1}{|r|}} \\
& v=b \cdot \frac{1}{r}
\end{aligned}
$$

So: $u^{\prime}(r)=v(r)=\frac{b}{r}$

$$
\begin{aligned}
& u(r)=\int \frac{b}{r} d r \\
& u(r)=b \cdot \ln (r)+a
\end{aligned}
$$

4. We now have $G(x, y ; \xi, \eta)=a+b \ln (r)$, where $r=\sqrt{(x-\xi)^{2}+(y-\eta)^{2}}$, and we need $-\Delta G=\delta_{\xi, \eta}$. Why can we choose $a=0$?

Differentiating G makes the constant not important, so choose $a=0$.
Choose a "baseline potential" of zero.
5. Let D be a disk of radius $\epsilon>0$ centered at (ξ, η), and let $C=\partial D$. Integrate $-\Delta G=\delta_{\xi, \eta}$ over D to solve for b.
we need: $-\Delta G=\delta_{\xi, \eta}$

integrate:

$$
\begin{aligned}
1 & =\iint_{D} \delta_{\xi, \eta}(x, y) d y d x \\
& =\iint_{D}-\Delta G d y d x \\
& =\iint_{D}-\Delta b \cdot \ln (r) d y d x \\
& =-b \iint_{D} \operatorname{div}(\nabla \ln (r)) d y d x \\
& =-b \oint_{\partial D} \nabla \ln (r) \cdot \vec{n} d s
\end{aligned}
$$

6. Write the Green's function for the 2D Poisson equation.

$$
\begin{aligned}
G(x, y ; \xi, \eta) & =\frac{-1}{2 \pi} \ln (r)=\frac{-1}{2 \pi} \ln \left[(x-\xi)^{2}+(y-\eta)^{2}\right]^{1 / 2} \\
& =\frac{-1}{4 r} \ln \left[(x-\xi)^{2}+(y-\eta)^{2}\right]
\end{aligned}
$$

