Generalized Functions

Math 330
Consider the boundary-value problem

$$
-c \frac{d^{2} u}{d x^{2}}=f(x), \quad u(0)=u(1)=0,
$$

which models the deflection of a unit-length elastic bar of stiffness c subject to a force $f(x)$.

1. Let $f(x)=\delta_{\xi}(x)$ for some $\delta \in(0,1)$. The differential equation is now

$$
-c \frac{d^{2} u}{d x^{2}}=\delta_{\xi}(x) .
$$

Integrate twice to find $u(x)$. Your answer should contain two integration constants.
2. Apply the boundary conditions $u(0)=u(1)=0$ to solve for your integration constants.
3. Let $G(x ; \xi)$ be the solution you found in $\# 2$. Sketch the graph of $G(x ; \xi)$.
4. Complete the following sentences.
(a) The function $G(x ; \xi)$ is called
(b) We interpret $G(x ; \xi)$ as
(c) For a general forcing function $f(x)$, the solution to the BVP is given by
5. For a constant unit force $f(x)=1$ for $0<x<1$, find the solution $u(x)$ to the BVP.

Consider the boundary-value problem

$$
-\frac{d^{2} u}{d x^{2}}+\omega^{2} u=f(x), \quad u(0)=u(1)=0, \quad \omega>0 .
$$

6. First, let $f(x)=\delta_{\xi}(x)$ for $0<\xi<1$. Show that

$$
G(x ; \xi)= \begin{cases}a \sinh (\omega x), & x<\xi, \\ b \sinh (\omega(1-x)), & x>\xi\end{cases}
$$

satisfies the BVP for $0 \leq x<\xi$ and $\xi<x \leq 1$.
7. If $G(x ; \xi)$ is to be continuous and $\frac{d G}{d x}(x ; \xi)$ has a jump discontinuity that matches that of $\sigma_{\xi}(x)$, what system of equations can you solve for a and b ?
8. Solving for a and b yields

$$
G(x ; \xi)= \begin{cases}\frac{\sinh (\omega(1-\xi)) \sinh (\omega x)}{\omega \sinh (\omega)}, & x \leq \xi, \\ \frac{\sinh (\omega(1-x)) \sinh (\omega \xi)}{\omega \sinh (\omega)}, & x>\xi .\end{cases}
$$

Now integrate to find $u(x)$ that solves the BVP with $f(x)=1$. Plot your solution.

