MATH 330 - 28 Nov. 2023
Motivation:
Linear system of n equations and n unknowns:

$$
A \vec{又}=\vec{b} \quad \text { so } \quad \vec{x}=A^{-1} \vec{b}
$$

n xn invertible matrix
$b_{0}=\vec{b}_{j} \cdot \vec{e}_{j}$ We could write $\vec{b}=b_{1} \vec{e}_{1}+b_{2} \vec{e}_{2}+\cdots+b_{n} \vec{e}_{n}$ where \vec{e}_{j} is the standard basis vector for the $j^{\text {th }}$ component of \mathbb{R}^{n}.
Then let \vec{x}_{j} solve $A \vec{x}_{j}=\vec{e}_{j}$, so $\vec{x}_{j}=A^{-1} \vec{e}_{j}$.
response of the system to \vec{e}_{j}

Q "unit impulse force" concentrated or the $j^{\text {th }}$ component

If you understand the "influence" of each \vec{e}_{j}, then you can solve the system for any vector \vec{b}.

Can we do something similar for differential equations?

Example: $\quad L(u(x))=f(x)$
${ }{ }^{L} L$ is a linear operator
e.g. $\frac{d^{2}}{d x^{2}}$

Now we need a solution $u(x)$ in an infinite-dimensional function space $C^{k}\left(\mathbb{R}^{n}\right)$.

Note: Instead of dot products, we have inner products.

$$
\langle f, g\rangle=\int_{\mathbb{R}^{n}} f(x) \cdot g(x) d x
$$

integral, rather than a finite sum
We don't have basis vectors, but we have the delta function.
Recall: $\quad \delta_{\xi}(x)=0$ if $x \neq \xi$
and $\quad \int_{-\infty}^{\infty} \delta_{\xi}(x) f(x) d x=f(\xi)$
$\delta_{\xi}(x)$ is a "unit impulse" at $x=\xi$
We wart to characterize the "response" to this unit impulse, then integrate the response over all points S.

Consider the boundary-value problem

$$
-c \frac{d^{2} u}{d x^{2}}=f(x), \quad u(0)=u(1)=0
$$

which models the deflection of a unit-length elastic bar of stiffness c subject to a force $f(x)$.

1. Let $f(x)=\delta_{\xi}(x)$ for some $\delta \in(0,1)$. The differential equation is now

$$
-c \frac{d^{2} u}{d x^{2}}=\delta_{\xi}(x)
$$

Integrate twice to find $u(x)$. Your answer should contain two integration constants.

$$
\begin{aligned}
\text { integrate once: } \quad-c \frac{d u}{\partial x}= & \sigma_{\xi}(x)+a \\
& c_{s t e p} \text { function } \\
\text { integrate again: } \quad-c u(x)= & p_{5}(x)+a x+b \\
& C_{\text {ramp }} \text { function }
\end{aligned}
$$

$$
\text { alternatively: } \quad u(x)=\frac{-1}{c} P_{\xi}(x)+a x+b
$$

2. Apply the boundary conditions $u(0)=u(1)=0$ to solve for your integration constants.
$G_{\xi}(x)=G(x ; \xi)=u(x)=\frac{-1}{c} p_{\xi}(x)+\frac{1-\xi}{c} x$
$\tau_{\text {the Green's function for this BVP }}$
3. Let $G(x ; \xi)$ be the solution you found in $\# 2$. Sketch the graph of $G(x ; \xi)$.

$$
\begin{aligned}
& \text { for } \quad \xi<x<1: \\
& \qquad \begin{aligned}
& \frac{-1}{c}(x-\xi)+\frac{1-\xi}{c} x \\
&=\frac{-x+\xi+x-\xi x}{c} \\
&=\frac{\xi-\xi x}{c}
\end{aligned}
\end{aligned}
$$

4. Complete the following sentences.
(a) The function $G(x ; \xi)$ is called
the Green's function for this BVP
(b) We interpret $G(x ; \xi)$ as the response to a unit impulse at $x=\xi$
(c) For a general forcing function $f(x)$, the solution to the BVP is given by

$$
u(x)=\int_{0}^{1} G(x ; \xi) f(\xi) d \xi
$$

5. For a constant unit force $f(x)=1$ for $0<x<1$, find the solution $u(x)$ to the BVP.

$$
\begin{aligned}
u(x) & =\int_{0}^{1} G(x ; \xi) 1 d \xi \\
& =\int_{0}^{x} \frac{1-x}{c} \cdot \xi d \xi+\int_{x}^{1}\left(\frac{-x}{c} \xi+\frac{x}{c}\right) d \xi \\
\xi<x & = \begin{cases}\frac{1-x}{c} \xi, & 0 \leq \xi \leq x \\
\frac{-x}{c} \xi+\frac{x}{c} & 0 \leq x \leq \xi \\
\frac{-\xi}{c} x+\frac{\xi}{c}, & \xi \& x \leq 1\end{cases} \\
& =\left[\frac{1-x}{c} \cdot \frac{1}{2} \xi^{2}\right]_{0}^{x}+\left[\frac{-x}{c} \cdot \frac{1}{2} \xi^{2}+\frac{x}{c} \xi\right]_{x}^{1} \\
& =\left[\frac{1-x}{c} \cdot \frac{1}{2} x^{2}-0\right]+\left[\frac{-x}{2 c}+\frac{x}{c}-\left(\frac{-x^{3}}{2 c}+\frac{x^{2}}{c}\right)\right] \\
& =\frac{x^{2}-x^{3}}{2 c}+\frac{-x+2 x+x^{3}-2 x^{2}}{2 c}=\frac{-x^{2}+x}{2 c}=u(x)
\end{aligned}
$$

We didn't do this in class. This example is also in the text.
Consider the boundary-value problem

$$
-\frac{d^{2} u}{d x^{2}}+\omega^{2} u=f(x), \quad u(0)=u(1)=0, \quad \omega>0
$$

6. First, let $f(x)=\delta_{\xi}(x)$ for $0<\xi<1$. Show that

$$
G(x ; \xi)= \begin{cases}a \sinh (\omega x), & x<\xi \\ b \sinh (\omega(1-x)), & x>\xi\end{cases}
$$

satisfies the BVP for $0 \leq x<\xi$ and $\xi<x \leq 1$.
7. If $G(x ; \xi)$ is to be continuous and $\frac{d G}{d x}(x ; \xi)$ has a jump discontinuity that matches that of $\sigma_{\xi}(x)$, what system of equations can you solve for a and b ?

$$
\begin{aligned}
& \text { Continuity at } x=\xi \text { requires: } \\
& \text { Also, at } x=\xi, u^{\prime}(x) \text { must have a jump } \\
& \text { jump discontinuity of } \int S_{\xi}(x) d x . \\
& \text { Since } \frac{\partial G}{\partial x}= \begin{cases}a \omega \cosh (\omega x), & x<\xi \\
-b \omega \cosh (\omega(1-x)), & x>\xi,\end{cases}
\end{aligned}
$$

$$
a \cdot \sinh (\omega \xi)=b \cdot \sinh (\omega(1-\xi))
$$

$$
\text { Also, at } x=\xi, u^{\prime}(x) \text { must have a jump discontinuity of size }-1 \text { to match the }
$$

we need:
$a \omega \cdot \cosh (\omega \xi)-1=-b \omega \cdot \cosh (\omega(1-\xi))$
8. Solving for a and b yields

$$
G(x ; \xi)= \begin{cases}\frac{\sinh (\omega(1-\xi)) \sinh (\omega x)}{\omega \sinh (\omega)}, & x \leq \xi, \\ \frac{\sinh (\omega(1-x)) \sinh (\omega \xi)}{\omega \sinh (\omega)}, & x>\xi .\end{cases}
$$

Now integrate to find $u(x)$ that solves the BVP with $f(x)=1$. Plot your solution.

$$
\begin{aligned}
u(x)=\int_{0}^{1} G(x ; \xi) \cdot 1 d \xi & =\int_{0}^{x} \frac{\sinh (\omega(1-x)) \cdot \sinh (\omega \xi)}{\omega \cdot \sinh (\omega)} d \xi+\int_{x}^{1} \frac{\sinh (\omega x) \cdot \sinh (\omega(1-\xi))}{\omega \sinh (\omega)} d \xi \\
& =\frac{\sinh (\omega(1-x))(\cosh (\omega \xi)-1)}{\omega^{2} \sinh (\omega)}+\frac{\sinh (\omega x)(\cosh (\omega(1-x))-1)}{\omega^{2} \sinh (\omega)} \\
u(x) & \text { for } 0 \leq x \leq 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { For } 0 \leq x<\xi \text { : } \quad \frac{d^{2} u}{\partial x^{2}}=a \omega^{2} \sinh (\omega x) \text {, } \\
& \text { So }-\frac{\partial^{2} u}{\partial x^{2}}+\omega^{2} u=-a \omega^{2} \sinh (\omega x)+\omega^{2} \cdot a \sinh (\omega x)=0=\delta_{\xi}(x) \\
& \text { For } \xi<x \leq 1 \text { : } \quad \frac{\partial^{2} u}{\partial x^{2}}=b \omega^{2} \sinh (\omega(1-x)) \text {, } \\
& \text { So }-\frac{d^{2} u}{\partial x^{2}}+\omega^{2} u=b \omega^{2} \sinh (\omega(1-x))+\omega^{2} \cdot b \sinh (\omega(1-x))=0=\delta_{g}(x)
\end{aligned}
$$

