Generalized Functions

Math 330

1. Let $g_{n}(x)=\frac{n}{\pi\left(1+n^{2} x^{2}\right)}$ for $x \in \mathbb{R}$ and $n \in \mathbb{Z}^{+}$.
(a) Make some plots of $g_{n}(x)$ for various positive integers n. How does the shape of the graph depend on n ?
(b) If $a \neq 0$, what is $\lim _{n \rightarrow \infty} g_{n}(a)$? What is $\lim _{n \rightarrow \infty} g_{n}(0)$?
(c) What is $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} g_{n}(x) d x$?
(d) What function is equal to $\lim _{n \rightarrow \infty} g_{n}(x)$?
2. Choose your favorite continuous function $u(x)$. (Everyone at your table should choose a different function.) Explore

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} g_{n}(x) u(x) d x
$$

What do you observe?
3. Let $\sigma_{\xi}(x)=\int_{a}^{x} \delta_{\xi}(t) d t$? Sketch a graph of $\sigma_{\xi}(x)$.
4. Let $\rho_{\xi}(x)=\int_{a}^{x} \sigma_{\xi}(t) d t$? Sketch a graph of $\rho_{\xi}(x)$.
5. What is $\frac{d \sigma_{\xi}}{d x}$?
6. Let $f(x)= \begin{cases}-x, & x<1 \\ x^{2}, & x>1 .\end{cases}$
(a) Write $f(x)$ as the sum of a continuous function $g(x)$ plus a step function σ_{ξ}.
(b) Differentiate $f(x)$ in the context of generalized functions.
7. Let $f(x)= \begin{cases}x, & -1<x<0 \\ x^{2}, & 0<x<3 \\ 0, & \text { otherwise. }\end{cases}$

Write $f(x)$ as the sum of a continuous function and step functions. Then differentiate $f(x)$ in the context of generalized functions.
8. Does $\delta(x)$ have a Fourier series?
(a) Find the Fourier coefficients of $\delta(x)$.
(b) Does the Fourier series you found in part (a) converge to $\delta(x)$? (Plot some partial sums.)
9. Let $s_{n}(x)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{k=1}^{n} \cos (k x)$.
(a) What is $\int_{-\pi}^{\pi} s_{n}(x) d x$?
(b) Explore $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} s_{n}(x) u(x) d x$ for your choice of continuous functions $u(x)$. What do you observe?

