Generalized Functions

Math 330

- **1.** Let $g_n(x) = \frac{n}{\pi(1+n^2x^2)}$ for $x \in \mathbb{R}$ and $n \in \mathbb{Z}^+$.
 - (a) Make some plots of $g_n(x)$ for various positive integers n. How does the shape of the graph depend on n?
 - (b) If $a \neq 0$, what is $\lim_{n \to \infty} g_n(a)$? What is $\lim_{n \to \infty} g_n(0)$?

(c) What is
$$\lim_{n \to \infty} \int_{-\infty}^{\infty} g_n(x) \, dx$$
?

(d) What function is equal to $\lim_{n\to\infty} g_n(x)$?

2. Choose your favorite continuous function u(x). (Everyone at your table should choose a different function.) Explore

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} g_n(x) u(x) \, dx.$$

What do you observe?

3. Let
$$\sigma_{\xi}(x) = \int_{a}^{x} \delta_{\xi}(t) dt$$
? Sketch a graph of $\sigma_{\xi}(x)$.

4. Let
$$\rho_{\xi}(x) = \int_{a}^{x} \sigma_{\xi}(t) dt$$
? Sketch a graph of $\rho_{\xi}(x)$.

5. What is
$$\frac{d\sigma_{\xi}}{dx}$$
?

6. Let
$$f(x) = \begin{cases} -x, & x < 1 \\ x^2, & x > 1. \end{cases}$$

(a) Write f(x) as the sum of a continuous function g(x) plus a step function σ_{ξ} .

(b) Differentiate f(x) in the context of generalized functions.

7. Let
$$f(x) = \begin{cases} x, & -1 < x < 0 \\ x^2, & 0 < x < 3 \\ 0, & \text{otherwise.} \end{cases}$$

Write f(x) as the sum of a continuous function and step functions. Then differentiate f(x) in the context of generalized functions.

- 8. Does $\delta(x)$ have a Fourier series?
 - (a) Find the Fourier coefficients of $\delta(x)$.

(b) Does the Fourier series you found in part (a) converge to $\delta(x)$? (Plot some partial sums.)

9. Let
$$s_n(x) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{k=1}^n \cos(kx).$$

(a) What is $\int_{-\pi}^{\pi} s_n(x) \, dx$?

(b) Explore $\lim_{n\to\infty} \int_{-\pi}^{\pi} s_n(x)u(x) dx$ for your choice of continuous functions u(x). What do you observe?