Generalized Functions

Math 330

1. Let $g_{n}(x)=\frac{n}{\pi\left(1+n^{2} x^{2}\right)}$ for $x \in \mathbb{R}$ and $n \in \mathbb{Z}^{+}$.
(a) Make some plots of $g_{n}(x)$ for various positive integers n. How does the shape of the graph depend on n ?
(b) If $a \neq 0$, what is $\lim _{n \rightarrow \infty} g_{n}(a)$? What is $\lim _{n \rightarrow \infty} g_{n}(0)$?

$$
\begin{aligned}
& \text { If } a \neq 0, \lim _{n \rightarrow \infty} g_{n}(a)=0 \\
& \lim _{n \rightarrow \infty} g_{n}(0)=\text { ANE }(\infty)
\end{aligned}
$$

(c) What is $\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} g_{n}(x) d x d$? $=\lim _{n \rightarrow \infty} 1=1$

$$
\left.\begin{array}{l}
\int_{-\infty}^{\infty} g_{n}(x) d x=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{n}{1+n^{2} x^{2}} d x=\left.\frac{1}{\pi} \arctan (n x)\right|_{-\infty} ^{\infty}
\end{array}=\frac{1}{\pi}\left[\lim _{x \rightarrow \infty} \arctan (n x)-\lim _{x \rightarrow-\infty} \arctan (n x)\right]\right] \text { (} n=\frac{1}{\pi}\left[\frac{\pi}{2}+\frac{+\pi}{2}\right]=1 .
$$

(d) What function is equal to $\lim _{n \rightarrow \infty} g_{n}(x)$?

There is no function that is zero except at one point and yet integrates to 1 .
Define $\underbrace{\delta(x)}_{\mathcal{T}_{\text {This }}}$ is be $\delta(x)=0$ for $x \neq 0$ and $\int_{-\infty}^{\infty} \delta(x) d x=1$.
called the Dirac delta function.
2. Choose your favorite continuous function $u(x)$. (Everyone at your table should choose a different function.) Explore

$$
\lim _{n \rightarrow \infty} \int_{-\infty}^{\infty} g_{n}(x) u(x) d x
$$

What do you observe?

$$
\begin{aligned}
& \text { Property: } \quad \int_{-\infty}^{\infty} \delta(x) u(x) d x=u(0) \text { for all continues functions } u(x) \text {. } \\
& \text { This integral selects the value of } u(x) \text { at } x=0 \text {. }
\end{aligned}
$$

DEFINITION: $\quad \delta_{\xi}(x)=\delta(x-\xi)$
shifts the delta function so that it is zero for all $x \neq \xi$
$\delta(x)$ has area 1 concentrated at $x=0$
$\delta_{\xi}(x)$ has ard 1 concentrated at $x=\xi$
assume $a<\xi<x$
3. Let $\sigma_{\xi}(x)=\int_{a}^{x} \delta_{\xi}(t) d t$? Sketch a graph of $\sigma_{\xi}(x)$.

$$
\text { step } \sigma_{\xi}(x)=\int_{a}^{x} \delta_{\xi}(t) d t= \begin{cases}0 & \text { if } x<\xi \\ 1 & \text { if } x>\xi\end{cases}
$$

4. Let $\rho_{\xi}(x)=\int_{a}^{x} \sigma_{\xi}(t) d t$? Sketch a graph of $\rho_{\xi}(x)$.
ramp function

$$
\rho_{\xi}(x)=\left\{\begin{array}{cll}
0 & \text { if } & x<\xi \\
x-\xi & \text { if } & x>\xi
\end{array}\right.
$$

5. What is $\frac{d \sigma_{\xi}}{d x}$? Integral of $\delta_{\xi}(x)$ is $\sigma_{\xi}(x)$.
σ_{0} So, derivative of $\sigma_{\xi}(x)$ is $\delta_{\xi}(x)$.
6. Let $f(x)= \begin{cases}-x, & x<1 \\ x^{2}, & x>1\end{cases}$
(a) Write $f(x)$ as the sum of a continuous function $g(x)$ plus a step function σ_{ξ}.

$$
f(x)=g(x)+2 \sigma_{1}(x), \quad \text { where } \quad g(x)=\left\{\begin{array}{lll}
-x & \text { if } & x<1 \\
x^{2}-2 & \text { if } & x>1
\end{array}\right.
$$

(b) Differentiate $f(x)$ in the context of generalized functions.

$$
f^{\prime}(x)=g^{\prime}(x)+2 \delta_{1}(x)
$$

7. Let $f(x)= \begin{cases}x, & -1<x<0 \\ x^{2}, & 0<x<3 \\ 0, & \text { otherwise. }\end{cases}$

Write $f(x)$ as the sum of a continuous function and step functions. Then differentiate $f(x)$ in the

$$
\begin{aligned}
& f(x)=g(x)-\sigma_{-1}(x)-9 \sigma_{3}(x), \quad \text { where } g(x)=\left\{\begin{array}{cl}
0, & x<-1 \\
x+1, & -1<x<0 \\
1+x^{2}, & 0<x<3 \\
10, & x>3
\end{array}\right.
\end{aligned}
$$

8. Does $\delta(x)$ have a Fourier series?
(a) Find the Fourier coefficients of $\delta(x)$.

$$
\begin{aligned}
& a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(x) \cos (k x) d x=\frac{1}{\pi} \\
& b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \delta(x) \sin (k x) d x=0 \\
& \text { Thus, } \quad \delta(x) \sim \frac{1}{2 \pi}+\frac{1}{\pi}(\cos (x)+\cos (2 x)+\cos (3 x)+\cdots)
\end{aligned}
$$

(b) Does the Fourier series you found in part (a) converge to $\delta(x)$? (Plot some partial sums.)

The Fourier series has a spike at $x=0$, but it doesn't converge to zero for $x \neq 0$.
9. Let $s_{n}(x)=\frac{1}{2 \pi}+\frac{1}{\pi} \sum_{k=1}^{n} \cos (k x)$.
(a) What is $\int_{-\pi}^{\pi} s_{n}(x) d x$?
$\int_{-\pi}^{\pi} S_{n}(x) d x=1$ for all positive integers n.
(b) Explore $\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} s_{n}(x) u(x) d x$ for your choice of continuous functions $u(x)$. What do you observe?

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} S_{n}(x) u(x) d x=u(0) \text { for all continuous functions } u(x)
$$

The sequence of functions $s_{1}(x), s_{2}(x), s_{3}(x), \ldots$ is said to "weakly converge" to $\delta(x)$.
See page 230 in the textbook for details.

