Finite Differences for the Transport Equation

Math 330
Recall the transport equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0, \quad u(0, x)=f(x), \quad-\infty<x<\infty .
$$

1. Use forward difference approximations to convert the transport equation into a finite difference equation. Let $u_{j, m}=u\left(t_{j}, x_{m}\right)$ and write your equation in the form

$$
u_{j+1, m}=
$$

where the right side of the equation involves $u_{j, m}$ and $u_{j, m+1}$.
2. Write your partial difference equation as a vector equation:

$$
\mathbf{u}^{(j+1)}=A \mathbf{u}^{(j)}
$$

where $\mathbf{u}^{(j)}$ is the vector whose m th entry is $u_{j, m}$.
3. Download the Mathematica file for the transport equation from the course website. Complete the specification of matrix A in the code. Run the code for wave speeds $c=0.5, c=-0.5, c=-1$, $c=-1.5$, and other values of your choice. What do you observe? How can you explain your observations?
4. Perform a stability analysis:
(a) Let $u_{j, m}=e^{i k x_{m}}$ and find λ such that $u_{j+1, m}=\lambda u_{j, m}$.
(b) Recalling that $|a+b i|^{2}=a^{2}+b^{2}$ for real numbers a and b, show that

$$
|\lambda|^{2}=1+2 \sigma(1+\sigma)(1-\cos (k \Delta x)) .
$$

(c) Conclude that $|\lambda| \leq 1$ if and only if $-\frac{\Delta x}{\Delta t} \leq c \leq 0$.
5. Now use a backward difference approximation for $\frac{\partial u}{\partial x}$ and a forward difference approximation for $\frac{\partial u}{\partial t}$. For what wave speeds is this approximation scheme stable?
6. Would a centered difference approximation for $\frac{\partial u}{\partial x}$ produce an approximation scheme that works for both positive and negative wave speeds? Try it and find out!

