Transport Equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & +c \frac{\partial u}{\partial x}=0 \\
& \text { transport speed }
\end{aligned}
$$

Describes flow in a 1-dimensional medium, with constant speed C.
Solutions: $f(x-c t)$ for any c^{1} function f.
Why do numerical approximation for this equation?
We want to understand now to apply finite differences to this equation.

Finite differences are easier to generalize than exact solutions.

Transport eq. is a warm-up case for the wave equation and more general hyperbolic ODEs.

$$
t, x \text {-space: }
$$

Finite Differences for the Transport Equation

Math 330
Recall the transport equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0, \quad u(0, x)=f(x), \quad-\infty<x<\infty .
$$

1. Use forward difference approximations to convert the transport equation into a finite difference equaldion. Let $u_{j, m}=u\left(t_{j}, x_{m}\right)$ and write your equation in the form

$$
u_{j+1, m}=
$$

where the right side of the equation involves $u_{j, m}$ and $u_{j, m+1}$.

$$
\begin{aligned}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}= & \frac{u_{j+1, m}-u_{j, m}}{\Delta t}+c \frac{u_{j, m+1}-u_{j, m}}{\Delta x}=0 \\
& u_{j+1, m}-u_{j, m}=\frac{-c \Delta t}{\Delta x}\left(u_{j, m+1}-u_{j, m}\right)
\end{aligned}
$$

$$
\begin{array}{lll}
x_{m+1} & \bullet \\
x_{m} & \bullet & \\
& t_{j} & t_{j+1}
\end{array}
$$

$$
\text { Let } \sigma=\frac{c \cdot \Delta t}{\Delta x} \text {. Then: }
$$

$$
u_{j+1, m}=(\sigma+1) u_{j, m}-\sigma u_{j, m+1}
$$

2. Write your partial difference equation as a vector equation:

$$
\mathbf{u}^{(j+1)}=A \mathbf{u}^{(j)}
$$

where $\mathbf{u}^{(j)}$ is the vector whose m th entry is $u_{j, m}$.

$$
\left[\begin{array}{c}
u_{j+1,0} \\
u_{j+1,1} \\
u_{j+1,2} \\
\vdots \\
u_{j+1, n}
\end{array}\right]=\left[\begin{array}{cccccc}
\sigma+1 & -\sigma & 0 & 0 & \cdots & 0 \\
0 & \sigma+1 & -\sigma & 0 & \cdots & 0 \\
0 & 0 & \sigma+1 & -\sigma & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -\sigma+1
\end{array}\right]\left[\begin{array}{c}
u_{j, 0} \\
u_{j, 1} \\
u_{j, 2} \\
\vdots \\
u_{j, n}
\end{array}\right]
$$

3. Download the Mathematic file for the transport equation from the course website. Complete the specification of matrix A in the code. Run the code for wave speeds $c=0.5, c=-0.5, c=-1$, $c=-1.5$, and other values of your choice. What do you observe? How can you explain your observations?
observe stability for wave speeds
Courant- Friedrich-Lewy (CFL) Criterion $\longrightarrow-1 \leq c \leq 0$
and instability otherwise

4. Perform a stability analysis:

$$
u_{j+1, m}=(\sigma+1) u_{j, m}-\sigma u_{j, m+1}
$$

(a) Let $u_{j, m}=e^{i k x_{m}}$ and find λ such that $u_{j+1, m}=\lambda u_{j, m}$.

$$
\begin{aligned}
u_{j+1, m} & =(\sigma+1) e^{i k x_{m}}-\sigma e^{i k\left(x_{m}+\Delta x\right)} \\
& =e^{i k x_{m}}\left(\sigma+1-\sigma e^{i k \Delta x}\right) \\
u_{j+1, m} & =u_{j, m}\left(\sigma+1-\sigma e^{i k \Delta x}\right)
\end{aligned}
$$

$$
x_{m+1}=x_{m}+\Delta x
$$

$$
e^{i k \Delta x}=\cos (k \Delta x)+i \sin (k \Delta x)
$$

(b) Recalling that $|a+b i|^{2}=a^{2}+b^{2}$ for real numbers a and b, show that

$$
\begin{aligned}
&|\lambda|^{2}=1+2 \sigma(1+\sigma)(1-\cos (k \Delta x)) . \\
& \mid \lambda^{2}\left.=|\sigma+1-\sigma \cos (k \Delta x)-\sigma i \sin (k \Delta x)|^{2}=(\sigma+1)-\sigma \cos (k \Delta x)\right)^{2}+\sigma^{2} \sin ^{2}(k \Delta x) \\
&=(\sigma+1)^{2}-2 \sigma(\sigma+1) \cos (k \Delta x)+\underbrace{\sigma^{2} \cos ^{2}(k \Delta x)+\sigma^{2} \sin ^{2}(k \Delta x)} \\
&=\sigma^{2}+2 \sigma+1-2 \sigma(\sigma+1) \cos (k \Delta x)+\sigma^{2}
\end{aligned}
$$

$$
|\lambda|^{2}=1+2 \sigma(\sigma+1)(1-\cos (k \Delta x))
$$

(c) Conclude that $|\lambda| \leq 1$ if and only if $-\frac{\Delta x}{\Delta t} \leq c \leq 0$.

$$
\begin{aligned}
& -1 \leq \sigma \leq 0 \\
& -1 \leq \frac{c \Delta t}{\Delta x} \leq 0
\end{aligned}
$$

$$
\frac{-\Delta x}{\Delta t} \leq c \leq 0
$$

5. Now use a backward difference approximation for $\frac{\partial u}{\partial x}$ and a forward difference approximation for $\frac{\partial u}{\partial t}$. For what wave speeds is this approximation scheme stable?

$$
\begin{array}{r}
\text { backwards difference: } \frac{\partial u}{\partial x} \approx \frac{u_{j, m}-u_{j, m-1}}{\Delta x} \\
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 \Rightarrow \frac{u_{j+1, m}-u_{j, m}}{\Delta t}+c \frac{u_{j, m}-u_{j, m-1}}{\Delta x}=0 \\
u_{j+1, m}=u_{j, m}-\frac{c \cdot \Delta t}{\Delta x}\left(u_{j, m}-u_{j, m-1}\right) \\
\text { Let } \sigma=\frac{c \cdot \Delta t}{\Delta x} . \text { Then: } \quad u_{j+1, m}=(1-\sigma) u_{j, m}+\sigma \cdot u_{j, m-1}
\end{array}
$$

This scheme is stable for $0 \leq \sigma \leq 1$.
6. Would a centered difference approximation for $\frac{\partial u}{\partial x}$ produce an approximation scheme that works for both positive and negative wave speeds? Try it and find out!

Centered difference: $\quad \frac{\partial u}{\partial x}=\frac{u_{j, m+1}-u_{j, m-1}}{2 \Delta x}$

$$
\begin{array}{r}
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0 \Rightarrow \frac{u_{j+1, m}-u_{j, m}}{\Delta t}+c \frac{u_{j, m+1}-u_{j, m-1}}{2 \Delta x}=0 \\
u_{j+1, m}=u_{j, m}-\frac{c \cdot \Delta t}{2 \Delta x}\left(u_{j, m+1}-u_{j, m-1}\right) \\
\text { Let } \sigma=\frac{c \cdot \Delta t}{\Delta x} . \quad \text { Then: } u_{j+1, m}=\frac{\sigma}{2} u_{j, m-1}+u_{j, m}-\frac{\sigma}{2} u_{j, m+1} .
\end{array}
$$

This scheme turns out to be unstable for all wave speeds.

