Implicit Scheme for the Heat Equation
 Math 330

Consider the heat equation with homogeneous Dirichlet boundary conditions:

$$
\frac{\partial u}{\partial t}=\gamma \frac{\partial^{2} u}{\partial x^{2}}, \quad u(t, 0)=0, \quad u(t, \ell)=0, \quad u(0, x)=f(x)
$$

We will derive a partial difference equation using the backward difference in time. This results in the implicit scheme for approximating solutions to the heat equation.

1. Substitute a backward difference for $\frac{\partial u}{\partial t}$ and a centered difference for $\frac{\partial^{2} u}{\partial x^{2}}$ into heat equation. Let $u_{j, m}=u\left(t_{j}, x_{m}\right)$. Write your equation in the form

$$
u_{m-1, j}=\ldots
$$

2. Write your partial difference equation as a vector equation:

$$
\mathbf{u}^{(j-1)}=A \mathbf{u}^{(j)}
$$

where $\mathbf{u}^{(j)}$ is the vector whose m th entry is $u_{j, m}$.
3. Download the Mathematica file for the implicit scheme from the course website. Complete the specification of matrix A in the code. Run the code for several choices of step sizes and initial conditions. What do you observe?
4. Perform a stability analysis of the implicit scheme. That is, let $u_{j, m}=e^{i k x_{m}}$ and simplify the difference equation as much as possible. Find a value λ such that $u_{j, m}=\lambda u_{j-1, m}$. Under what conditions is $|\lambda| \leq 1 ?$

Crank-Nicolson Scheme for the Heat Equation

Math 330
Consider the explicit (forward) and implicit (backward) schemes for the heat equation:

$$
\begin{array}{ll}
\text { explicit: } & \frac{u_{j+1, m}-u_{j, m}}{\Delta t}=\gamma \frac{u_{j, m+1}-2 u_{j, m}+u_{j, m-1}}{(\Delta x)^{2}} \\
\text { implicit: } & \frac{u_{j+1, m}-u_{j, m}}{\Delta t}=\gamma \frac{u_{j+1, m+1}-2 u_{j+1, m}+u_{j+1, m-1}}{(\Delta x)^{2}}
\end{array}
$$

1. Add the two difference equations above and obtain a new difference equation of the form

$$
u_{j+1, m}-u_{j, m}=\frac{\mu}{2}[\quad ?]
$$

2. Collect all the terms with time index $j+1$ on the left, and all the terms with time index j on the right. Then write your equation in vector form $A \mathbf{u}^{(j+1)}=B \mathbf{u}^{(j)}$ for some matrices A and B.
3. Download the Mathematica file for the Crank-Nicolson scheme from the course website. Complete the specification of matrices A and B in the code. Run the code for several choices of step sizes and initial conditions. What do you observe?
4. Perform a stability analysis of the implicit scheme. It may help to let $u_{j, m}=e^{i k x_{m}} \lambda^{j}$ and solve for λ. Under what conditions is $|\lambda| \leq 1$?
