Finite Difference Approximations

How can we approximate a function with a polynomial?
Taylor's Theorem: If $f(x)$ has $k+1$ derivatives, then

$$
f(x+h)=\underbrace{f(x)+f^{\prime}(x) \cdot h+\frac{1}{2} f^{\prime \prime}(x) h^{2}+\cdots+\frac{1}{k!} f^{(k)}(x) h^{k}}_{\substack{\text { Taylor polynomial of degree } k}}+\underbrace{\frac{1}{(k+1)!} f^{(k+1)}(\xi) h^{k+1}}_{\begin{array}{c}
\text { error } \\
\text { term, }
\end{array}}
$$

Example: difference quotient
Suppose $u(x)$ is a C^{2} functions. Than:

$$
u(x+h)=\underbrace{u(x)+u^{\prime}(x) \cdot h_{1}}_{\text {Taylor polynomial }}+\underbrace{\frac{1}{2} u^{\prime \prime}(\xi) h^{2}}_{\text {error term }}
$$

Then: $u^{\prime}(x) \approx \underbrace{\frac{u(x+h)-u(x)}{h}}$ with truncation eros $\frac{1}{2} u^{\prime \prime}(\xi) \cdot h$ difference quotient \rightarrow slope of the secant line

Let $C=\max \left|\frac{1}{2} u^{\prime \prime}(x)\right|$, then the
 truncation error is $\leq C|h|$
We say the error is $O\left(h^{2}\right)$, which means the error is
"big-O of h " at worst a constant multiple of h.

Derivative Approximations

Math 330

1. Let u be a C^{3} function.
(a) Write the Taylor polynomial of degree 2 for $u(x+h)$.

$$
u(x+h)=u(x)+u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}+\frac{1}{6} u^{\prime \prime \prime}(\xi) h^{3}
$$

(b) Write the Taylor polynomial of degree 2 for $u(x-h)$.

$$
u(x-h)=u(x)-u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}-\frac{1}{6} u^{\prime \prime \prime}(\xi) h^{3}
$$

(c) Subtract one Taylor polynomial from the other, and solve for $u^{\prime}(x)$. You now have an approximation for the first derivative. What is the order of its truncation error?

2. Let u be a C^{4} function.
(a) Write the Taylor polynomial of degree 3 for $u(x+h)$.

$$
u(x+h)=u(x)+u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}+\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+O\left(h^{4}\right)
$$

(b) Write the Taylor polynomial of degree 3 for $u(x-h)$.

$$
u(x-h)=u(x)-u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}-\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+O\left(h^{4}\right)
$$

(c) Add the two Taylor polynomials and solve for $u^{\prime \prime}(x)$. You now have an approximation for the second derivative. What is the order of its truncation error?

$$
\begin{array}{cc}
u(x+h)+u(x-h)=2 u(x)+u^{\prime \prime}(x) h^{2} & +O\left(h^{4}\right) \\
u^{\prime \prime}(x)=\frac{u(x+h)-2 u(x)+u(x-h)}{h^{2}} & \text { with error } O\left(h^{2}\right) \\
\text { Centered Difference Approximation of } u^{\prime \prime}(x)
\end{array}
$$

3. Here is one more example that suggests a more general approach for finding finite difference approximations to derivatives. We seek an approximation of $u^{\prime}(x)$ using the values $u(x-h), u(x), u(x+h)$, and $u(x+2 h)$.
(a) Write the Taylor polynomials of degree 3 for $u(x-h), u(x), u(x+h)$, and $u(x+2 h)$.

$$
u(x-h)=1 u(x)-1 u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}-\frac{1}{6} u^{\prime \prime \prime}(x) h^{3} \quad+O\left(h^{4}\right)
$$

$$
\begin{aligned}
u(x) & =u(x) \quad \leftarrow \text { no error } \\
u(x+h) & =u(x)+u^{\prime}(x) h+\frac{1}{2} u^{\prime \prime}(x) h^{2}+\frac{1}{6} u^{\prime \prime \prime}(x) h^{3}+O\left(h^{4}\right) \\
u(x+2 h) & =u(x)+u^{\prime}(x) \cdot 2 h+\frac{1}{2} u^{\prime \prime}(x)(2 h)^{2}+\frac{1}{6} u^{\prime \prime \prime}(x)(2 h)^{3}+O\left(h^{4}\right)
\end{aligned}
$$

(b) View your Taylor polynomials as a system of linear equations of the following form:

$$
\left[\begin{array}{c}
u(x-h) \\
u(x) \\
u(x+h) \\
u(x+2 h)
\end{array}\right]=A\left[\begin{array}{c}
u(x) \\
u^{\prime}(x) h \\
u^{\prime \prime}(x) h^{2} \\
u^{\prime \prime \prime}(x) h^{3}
\end{array}\right]
$$

where A is a 4×4 coefficient matrix. What is this matrix?

$$
\left[\begin{array}{l}
u(x-h) \\
u(x) \\
u(x+h) \\
u(x+2 h)
\end{array}\right]=\left[\begin{array}{cccc}
1 & -1 & \frac{1}{2} & \frac{-1}{6} \\
1 & 0 & 0 & 0 \\
1 & 1 & \frac{1}{2} & \frac{1}{6} \\
1 & 2 & 2 & \frac{4}{3}
\end{array}\right]\left[\begin{array}{l}
u(x) \\
u^{\prime}(x) h \\
u^{\prime \prime}(x) h^{2} \\
u^{\prime \prime \prime}(x) h^{3}
\end{array}\right] \quad+O\left(h^{4}\right)
$$

(c) Find A^{-1}. (Use technology.) Use the entries in the second row of A^{-1} to write down an approximation of $u^{\prime}(x)$. What is the order of the truncation error?

$$
\begin{aligned}
& \left\{\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\frac{1}{3} & -\frac{1}{2} & 1 & -\frac{1}{6} \\
1 & -2 & 1 & 0 \\
-1 & 3 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
u(x-h) \\
u(x) \\
u(x+h) \\
u(x+2 h)
\end{array}\right]=\left[\begin{array}{c}
u(x) \\
u^{\prime}(x) h \\
u^{\prime \prime}(x) h^{2} \\
u^{\prime \prime}(x) h^{3}
\end{array}\right]+O\left(h^{4}\right)\right. \\
& \\
& u^{\prime}(x)=\frac{1}{h}\left(-\frac{1}{3} u(x+h)-\frac{1}{2} u(x)+u(x+h)-\frac{1}{6} u(x+2 h)\right)+O\left(h^{3}\right)
\end{aligned}
$$

(d) Note that the entries of A^{-1} also give you approximations of $u^{\prime \prime}(x)$ and $u^{\prime \prime \prime}(x)$.
for example: $\quad u^{\prime \prime \prime}(x)=\frac{1}{h^{3}}(-u(x-h)+3 u(x)-3 u(x+h)+u(x+2 h))+O(h)$

