5. Let $\hat{f}(x)$ be the 2π-periodic even extension of e^{x}. Sketch $\hat{f}(x)$.

6. Compute the Fourier series of $\hat{f}(x)$. Plot some partial sums of this Fourier series.

$$
\begin{aligned}
& a_{k}=\frac{2}{\pi} \cdot \int_{0}^{\pi} f(x) \cos (k x) d x \\
& e^{x} \\
& \hat{f}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k x)
\end{aligned}
$$

7. What happens if you differentiate the Fourier series for $\hat{f}(x)$ term by term to obtain $\hat{f}^{\prime}(x)$? Plot some partial sums of $\hat{f}^{\prime}(x)$.

$$
\hat{f}^{\prime}(x) \stackrel{?}{=} 0+\sum_{k=1}^{\infty}-a_{k} \cdot k \sin (k x)
$$

8. What happens if you differentiate the Fourier series for $\hat{f}^{\prime}(x)$ term by term to obtain $\hat{f}^{\prime \prime}(x)$? Plot some partial sums of $\hat{f}^{\prime \prime}(x)$.

$$
f^{\prime \prime}(x) \stackrel{?}{=} \sum_{k=1}^{\infty}-a_{k} \cdot k^{2} \cos (k x)
$$

