Separation of Variables

Problem I: heat equation with homogeneous Dirichlet boundary conditions (i.e., zero emperature at endpoints)

PDF:

Boundary Conditions:
$\frac{\partial u}{\partial t}=\gamma \frac{\partial^{2} u}{\partial x^{2}}$

Initial Condition:

$$
u(t, 0)=0 \quad \text { and } \quad u(t, \pi)=0
$$

$$
u(0, x)= \begin{cases}x, & 0<x \leq \frac{\pi}{2} \\ \pi-x, & \frac{\pi}{2}<x<\pi\end{cases}
$$

1. We will look for solutions of the form $u(t, x)=G(t) v(x)$, where $G=G(t)$ is a function of t only and $v=v(x)$ is a function of x only. Plug this solution unto the PDE and separate variables: move everything that depends on t to the left side of the equation, and everything that depends on x to the right side. As good practice, keep the derivative expressions in the numerators, and group the γ constant with the G function.

$$
\begin{gathered}
\frac{\partial u}{\partial t}=G^{\prime}(t) v(x) \text { and } \frac{\partial^{2} u}{\partial x^{2}}=G(t) v^{\prime \prime}(x) \\
\frac{\partial u}{\partial t}=\gamma \frac{\partial^{2} u}{\partial x^{2}} \text { becomes } G^{\prime}(t) v(x)=\gamma G(t) v^{\prime \prime}(x) \\
\text { or: } \frac{G^{\prime}(t)}{\gamma G(t)}=\frac{v^{\prime \prime}(x)}{v(x)} \text { function of } \\
x \text { alone }
\end{gathered}
$$

2. Each side of your new equation equals a constant, in fact the same constant. Why is this?

$$
\frac{G^{\prime}(t)}{\gamma G(t)}=\frac{v^{\prime \prime}(x)}{v(x)}=\begin{gathered}
\text { some } \\
\text { constant }
\end{gathered}=-\lambda
$$

3. Denote the constant by $-\lambda$ (the negative is just for convenience later). Since each side of the equation equals $-\lambda$, this produces two ordinary differential equations, one in $G(t)$ and the other in $v(x)$. Write down these two ordinary differential equations. Simplify or rearrange them so that they look familiar enough to solve.

$$
G^{\prime}(t)=-\lambda \gamma G(t) \quad v^{\prime \prime}(x)=-\lambda v(x)
$$

4. Solve the time-dependent ODE for $G(t)$. Of the three options, $\lambda>0, \lambda=0$, or $\lambda<\pi$, which ones
seem the most physically relevant?

$$
\begin{aligned}
& G^{\prime}(t)=-\lambda \gamma G(t) \\
& \text { has solution } G(t)=c \cdot e^{-\lambda \gamma t} \\
& \text { Assume } c \neq 0
\end{aligned}
$$

5. The position-dependent ODE, along with the given boundary conditions, form a boundary value problem for $v(x)$. Find the general solution for each of the three cases, $\lambda>0, \lambda=0$, and $\lambda<0$. Which cases yield a nontrivial solution?
boundary:

General solution to the PDE:

$$
u(t, x)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} t} \sin (n x)
$$

6. You now have a general solution to Problem 1 , using everything except the initial condition. Finally, use the initial condition to obtain a particular solution.
to be continued...
7. Use technology to plot your particular solution over time. (Set $\gamma=1$.) Does it seem reasonable to you?

Problem II: heat equation with homogeneous Neumann boundary conditions (i.e., zero flux at endpoints)

$$
\begin{array}{ll}
\text { PDE: } & \frac{\partial u}{\partial t}=\gamma \frac{\partial^{2} u}{\partial x^{2}} \\
\text { Boundary Conditions: } & \frac{\partial u}{\partial x}(t, 0)=0 \text { and } \quad \frac{\partial u}{\partial x}(t, 1)=0 \\
\text { Initial Condition: } & u(0, x)= \begin{cases}x, & 0<x \leq \frac{1}{2} \\
1-x, & \frac{1}{2}<x<1\end{cases}
\end{array}
$$

Work through the steps on the previous page to solve Problem II.

