More Fourier Series

Math 330

1. Use Euler's formula to express $e^{i k x}$ in terms of sine and cosine functions. Then do the same for $e^{-i k x}$.
2. Now express $\cos (k x)$ in terms of complex exponentials. Then do the same for $\sin (k x)$.
3. Use your formulas to convert a trigonometric Fourier series into a series of complex exponentials. Specifically, fill in the boxes in the following equation.

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right)=\square+\sum_{k=1}^{\infty}\left(\square e^{-i k x}+\square e^{i k x}\right)
$$

4. If $f(x) \sim \sum_{k=-\infty}^{\infty} c_{k} e^{i k x}$ on $[-\pi, \pi]$, then the complex Fourier coefficients are computed via

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
$$

Compute the complex Fourier coefficients for $f(x)=e^{x}$. Then plot $f(x)$ together with partial sums of its complex Fourier series.
5. Let $\hat{f}(x)$ be the 2π-periodic even extension of e^{x}. Sketch $\hat{f}(x)$.
6. Compute the Fourier series of $\hat{f}(x)$. Plot some partial sums of this Fourier series.
7. What happens if you differentiate the Fourier series for $\hat{f}(x)$ term by term to obtain $\hat{f}^{\prime}(x)$? Plot some partial sums of $\hat{f}^{\prime}(x)$.
8. What happens if you differentiate the Fourier series for $\hat{f}^{\prime}(x)$ term by term to obtain $\hat{f}^{\prime \prime}(x)$? Plot some partial sums of $\hat{f}^{\prime \prime}(x)$.

