Fourier Series

Math 330

1. Match the following 2π-periodic functions with their Fourier series without solving for the coefficients.

We did (a) $f(x)=x^{2}$ for $x \in[-\pi, \pi]$
I. $f(x)=\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{k(-1)^{k}}{1-4 k^{2}} \sin (k x)$
this last
time.
(b) $f(x)=x\left(\pi^{2}-x^{2}\right)$ for $x \in[-\pi, \pi]$
II. $f(x)=\frac{\pi^{2}}{3}+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos (k x)$
(c) $f(x)=\sin \left(\frac{x}{2}\right)$ for $x \in[-\pi, \pi]$
III. $f(x)=-12 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}} \sin (k x)$
(d) $f(x)= \begin{cases}\frac{\pi}{2}+x, & -\pi \leq x<0 \\ \frac{\pi}{2}-x, & 0 \leq x \leq \pi\end{cases}$
IV. $f(x)=\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1-(-1)^{k}}{k^{2}} \cos (k x)$
2. Let $f(x)=1-x$ be defined on $x \in[0,1]$.
(a) Sketch $\tilde{f}(x)$, the odd 2-periodic extension of $f(x)$. That is, $\tilde{f}(x)$ should be an odd function with period 2 .

(b) If you were to write a trigonometric series that converges $\tilde{f}(x)$, what terms would you put in this series?

$$
\text { property: } \int_{-1}^{1} \sin (m \pi x) \sin (n \pi x) d x=\left\{\begin{array}{lll}
0 & \text { if } & m \neq n(i n g r u s) \\
1 & \text { if } & m=0
\end{array}\right)
$$

(c) Compute the coefficients for your trigonometric series from part (b). Then plot some partial sums of this series together with $\tilde{f}(x)$.

$$
\begin{aligned}
b_{k}=\int_{-1}^{1} \tilde{f}(x) \sin (k \pi x) d x & =\int_{-1}^{0}(-x-1) \sin (k \pi x) d x+\int_{0}^{1}(1-x) \sin (k \pi x) d x \\
= & \int_{0}^{1} \underbrace{1}_{\text {integrate by parts }} \\
\text { So: } & \underset{d x}{\sin (k \pi x) d x}=\underbrace{(k)}_{\text {br }}=\sum_{k=1}^{\infty} \frac{2}{k \pi} \sin (k \pi x)
\end{aligned}
$$

(d) Sketch $\hat{f}(x)$, the even 2-periodic extension of $f(x)$. That is, $\hat{f}(x)$ should be an even function with period 2.

(e) If you were to write a trigonometric series that converges $\hat{f}(x)$, what terms would you put in this series?

$$
\hat{f}(x) \sim \sum_{k=0}^{\infty} a_{k} \cos (k \pi x)
$$

(f) Compute the coefficients for your trigonometric series from part (e). Then plot some partial sums of this series together with $\hat{f}(x)$.

$$
\begin{gathered}
a_{k}=\int_{-1}^{1} \hat{f}(x) \cos (k \pi x) d x=2 \int_{0}^{1}(1-x) \cos (k \pi x) d x=\frac{2\left(1-(-1)^{k}\right)}{k^{2} \pi^{2}} \\
a_{0}=\int_{-1}^{1} \hat{f}(x) d x=2 \\
\hat{f}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (k \pi x)=\frac{1}{2}+\sum_{k=1}^{\infty} \frac{2\left(1-(-1)^{k}\right)}{k^{2} \pi^{2}} \cos (k \pi x)
\end{gathered}
$$

More Fourier Series
Math 330

1. Use Euler's formula to express $e^{i k x}$ in terms of sine and cosine functions. Then do the same for $e^{-i k x}$.

$$
e^{i k x}=\cos (k x)+i \sin (k x)
$$

ADD
2. Now express $\cos (k x)$ in terms of complex exponentials. Then do the same for $\sin (k x)$.

$$
\begin{aligned}
& \cos (k x)=\frac{e^{i k x}+e^{-i k x}}{2} \quad e^{i k x}-e^{-i k x}=2 i \sin (k x) \\
& \sin (k x)=\frac{e^{i k x}-e^{-i k x}}{2 i}
\end{aligned}
$$

3. Use your formulas to convert a trigonometric Fourier series into a series of complex exponentials. Specifically, fill in the boxes in the following equation.

$$
\begin{aligned}
& \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos (k x)+b_{k} \sin (k x)\right)=\frac{a_{0}}{2} e^{0}+\sum_{k=1}^{\infty}\left(\frac{a_{k}+i b_{k}}{2} e^{-i k x}+\frac{a_{k}-i b_{k}}{2} e^{i k x}\right) \\
& =\frac{a_{0}}{2} e^{0}+\sum_{k=1}^{\infty}\left[a_{k} \frac{e^{i k x}+e^{-i k x}}{2}+b_{k} \frac{e^{i k x}-e^{-i k x}}{2 i}\right]=\sum_{k=-\infty}^{\infty} c_{k} e^{+i k x}
\end{aligned}
$$

4. If $f(x) \sim \sum_{k=-\infty}^{\infty}\left(c_{k e}\right)^{k x}$ on $[-\pi, \pi]$, then the complex Fourier coefficients are computed via

$$
\int_{-\pi}^{\pi} e^{i m x} e^{-i n x} d x=
$$

Compute the complex Fourier coefficients for $f(x)=e^{x}$. Then plot $f(x)$ together with partial sums of its complex Fourier series.

$$
\begin{aligned}
& c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{-i k x} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(1-i k) x} d x=\frac{1}{2 \pi}\left[\frac{1}{1-i k} e^{(1-i k) x}\right]_{x=-\pi}^{n} \\
& \left(e^{-i k}=\left(e^{-i}\right)^{k}=\frac{1}{2 \pi} \cdot \frac{1}{(1-i k)}\left[e^{\pi(1-i k)}-e^{-\pi(1-i k)}\right]=\frac{e^{\pi}\left(e^{-i \pi}\right)^{k}-e^{-\pi}\left(e^{i \pi}\right)^{k}}{2 \pi(1-i k)}=\frac{e^{\pi}(-1)^{k}-e^{-i \pi}}{2 \pi(1-i}\right. \\
& e^{i \pi}=-1=e^{-i \pi} \quad e^{i \pi}=\cos \pi+i \sin \pi
\end{aligned}
$$

To be continued next time...
5. Let $\hat{f}(x)$ be the 2π-periodic even extension of e^{x}. Sketch $\hat{f}(x)$.
6. Compute the Fourier series of $\hat{f}(x)$. Plot some partial sums of this Fourier series.
7. What happens if you differentiate the Fourier series for $\hat{f}(x)$ term by term to obtain $\hat{f}^{\prime}(x)$? Plot some partial sums of $\hat{f}^{\prime}(x)$.
8. What happens if you differentiate the Fourier series for $\hat{f}^{\prime}(x)$ term by term to obtain $\hat{f}^{\prime \prime}(x)$? Plot some partial sums of $\hat{f}^{\prime \prime}(x)$.

