Fourier Coefficients
Math 330

1. Find the Fourier series of $f(x)=|x|$. Then plot $f(x)$ together with partial sums of its Fourier series. We did this last time.
2. Find the Fourier series of $f(x)=\left\{\begin{array}{ll}1, & \text { if } x \geq 0 \\ -1, & \text { if } x<0\end{array}\right.$. Then plot $f(x)$ together with partial sums of its Fourier series.

piecewise C^{1}
piecewise C^{n} for integer pos.
Fourier series for $f(x)$ converges to:

$$
=\frac{2}{\pi}\left[\frac{-1}{k} \cos (k x)\right]_{0}^{\pi}=\frac{-2}{k \pi}[\cos (k \pi)-\cos (0)]
$$

$$
=\frac{-2}{k \pi}\left((-1)^{k}-1\right)=\frac{1-(-1)^{k}}{k \pi} \cdot 2
$$

FOURIER
SERIES: $f(x) \sim \sum_{k=1}^{\infty} \frac{2\left(1-(-1)^{k}\right)}{k \pi} \sin (k x)$

For fixed x not a multiple of π, continuous at multiples of π

The Fourier series converges pointwise, but not uniformly.
3. Find the Fourier series of $f(x)=3 x-2$. Then plot $f(x)$ together with partial sums of its Fourier series.

We didn't do this in class, but here is the solution:

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}(3-2 x) d x=6 \\
& a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi}(3-2 x) \cos (k x) d x=\frac{6 \sin (k \pi)}{k \pi}=0 \quad \text { for } k=1,2,3, \ldots
\end{aligned}
$$

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi}(3-2 x) \sin (k x) d x=\frac{4(-1)^{k}}{k} \text { for } k=1,2,3, \ldots
$$

Thus, the Fourier series is: $3-2 x \sim 3+\sum_{k=1}^{\infty} \frac{4(-1)^{k}}{k} \sin (k x)$
4. What property of $f(x)$ guarantees that its Fourier series consists only of sine terms?

$$
\begin{aligned}
& f(x) \text { is an even function } \\
& \text { That is: } f(-x)=f(x)
\end{aligned}
$$

5. What property of $f(x)$ guarantees that its Fourier series consists of only cosine terms?

$$
\begin{aligned}
& f(x) \text { is an odd function } \\
& \text { That is: } f(-x)=-f(x)
\end{aligned}
$$

6. Based on the Fourier series that you have seen so far, make a conjecture about the points at which the Fourier series for $f(x)$ converges to $f(x)$.

Fourier Series

Math 330

1. Match the following 2π-periodic functions with their Fourier series without solving for the coefficients.

2. Let $f(x)=1-x$ be defined on $x \in[0,1]$.
(a) Sketch $\tilde{f}(x)$, the odd 2-periodic extension of $f(x)$. That is, $\tilde{f}(x)$ should be an odd function with period 2.

(b) If you were to write a trigonometric series that converges $\tilde{f}(x)$, what terms would you put in this series?

$$
\sin (x) \text { hos period } 2 \pi
$$

these $\left\{\begin{array}{lll}\sin (\pi x) & \text { has period } 2 & \text { also! } \\ \sin (2 \pi x) \text { has period } 1 & \cos (\pi x) \\ \sin (3 \pi x) & \cos (2 \pi x)\end{array}\right.$
(c) Compute the coefficients for your trigonometric series from part (b). Then plot some partial sums of this series together with $\tilde{f}(x)$.

We will do this next time...
(d) Sketch $\hat{f}(x)$, the even 2-periodic extension of $f(x)$. That is, $\hat{f}(x)$ should be an even function with period 2.
(e) If you were to write a trigonometric series that converges $\hat{f}(x)$, what terms would you put in this series?
(f) Compute the coefficients for your trigonometric series from part (e). Then plot some partial sums of this series together with $\hat{f}(x)$.

