Fourier Series

Math 330

1. Match the following 2π-periodic functions with their Fourier series without solving for the coefficients.
(a) $f(x)=x^{2}$ for $x \in[-\pi, \pi]$
I. $f(x)=\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{k(-1)^{k}}{1-4 k^{2}} \sin (k x)$
(b) $f(x)=x\left(\pi^{2}-x^{2}\right)$ for $x \in[-\pi, \pi]$
II. $f(x)=\frac{\pi^{2}}{3}+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos (k x)$
(c) $f(x)=\sin \left(\frac{x}{2}\right)$ for $x \in[-\pi, \pi]$
III. $f(x)=-12 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{3}} \sin (k x)$
(d) $f(x)= \begin{cases}\frac{\pi}{2}+x, & -\pi \leq x<0 \\ \frac{\pi}{2}-x, & 0 \leq x \leq \pi\end{cases}$
IV. $f(x)=\frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1-(-1)^{k}}{k^{2}} \cos (k x)$
2. Let $f(x)=1-x$ be defined on $x \in[0,1]$.
(a) Sketch $\tilde{f}(x)$, the odd 2-periodic extension of $f(x)$. That is, $\tilde{f}(x)$ should be an odd function with period 2.
(b) If you were to write a trigonometric series that converges $\tilde{f}(x)$, what terms would you put in this series?
(c) Compute the coefficients for your trigonometric series from part (b). Then plot some partial sums of this series together with $\tilde{f}(x)$.
(d) Sketch $\hat{f}(x)$, the even 2-periodic extension of $f(x)$. That is, $\hat{f}(x)$ should be an even function with period 2.
(e) If you were to write a trigonometric series that converges $\hat{f}(x)$, what terms would you put in this series?
(f) Compute the coefficients for your trigonometric series from part (e). Then plot some partial sums of this series together with $\hat{f}(x)$.
