1. Match the following 2π -periodic functions with their Fourier series without solving for the coefficients.

(a)
$$f(x) = x^2 \text{ for } x \in [-\pi, \pi]$$

I.
$$f(x) = \frac{8}{\pi} \sum_{k=1}^{\infty} \frac{k(-1)^k}{1 - 4k^2} \sin(kx)$$

(b)
$$f(x) = x(\pi^2 - x^2)$$
 for $x \in [-\pi, \pi]$

II.
$$f(x) = \frac{\pi^2}{3} + 4\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} \cos(kx)$$

(c)
$$f(x) = \sin\left(\frac{x}{2}\right)$$
 for $x \in [-\pi, \pi]$

III.
$$f(x) = -12 \sum_{k=1}^{\infty} \frac{(-1)^k}{k^3} \sin(kx)$$

(d)
$$f(x) = \begin{cases} \frac{\pi}{2} + x, & -\pi \le x < 0 \\ \frac{\pi}{2} - x, & 0 \le x \le \pi \end{cases}$$

IV.
$$f(x) = \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{1 - (-1)^k}{k^2} \cos(kx)$$

2. Let f(x) = 1 - x be defined on $x \in [0, 1]$.

(a) Sketch $\tilde{f}(x)$, the odd 2-periodic extension of f(x). That is, $\tilde{f}(x)$ should be an odd function with period 2.

(b) If you were to write a trigonometric series that converges $\tilde{f}(x)$, what terms would you put in this series?

