Math 330

1. Let m and n be integers. Prove the identity

Here, m and n are integers!

$$
\begin{aligned}
\langle\sin (m x), \sin (n x)\rangle & =\int_{=\pi}^{\pi} \sin (m x) \sin (n x) d x=\left\{\begin{array}{l}
0, \text { if } m \neq n, \text { or } \quad m=n=0, \\
\pi, \text { if } m=n \neq 0
\end{array}\right. \\
& -\pi \operatorname{RECALL:~}^{m} \quad \sin (\alpha) \sin (\beta)=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
\end{aligned}
$$

Let $\alpha=m x, \beta=n x$, Then:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\frac{1}{2} \int_{-\pi}^{\pi}[\cos ((m-n) x)-\cos ((m+n) x)] d x \\
& \quad \text { if } \quad \rightarrow=\frac{1}{2}\left[\frac{1}{m-n} \sin ((m-n) x)-\frac{1}{m+n} \sin ((m+n) x)\right]_{-\pi}^{\pi}=0 \\
& \text { If } m=n \neq 0: \quad \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\int_{\pi}^{\pi} \sin ^{2}(n x) d x=\int_{-\pi}^{\pi} \frac{1-\cos (2 n x)}{2} d x=\pi
\end{aligned}
$$

We will continue this next time...
2. We would like to be able to write "any" function $f(x)$ as a sum of sine functions. Assume that $f(x)$ can be written as

$$
\rightarrow f(x)=\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

Multiply both sides of the equation above by $\sin (m x)$, then integrate both sides from $-\pi$ to π with respect to x. Interchange integration and summation and solve for b_{k}.

$$
\int_{-\pi}^{\pi} f(x) \sin (m x) d x=\sum_{k=1}^{\infty} b_{k} \sin \left(k_{x}\right) \sin (m x) d x
$$

$$
\int_{-\pi}^{\pi} f(x) \sin (m x) d x=\sum_{k=1}^{\infty} b_{k} \underbrace{\int_{-\pi}^{\pi} \sin (k x) \sin (m x) d x}_{=0}=b_{m} \cdot \pi u^{\text {unless }} \quad m=k \text {, in which }
$$

Thus: $\quad \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (m x) d x=b_{m}$

$$
\text { Alternatively } b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x
$$

$$
x=\sum_{k=1}^{\infty} b_{k} \sin (k x)
$$

3. Use your newfound power to write $f(x)=x$ as a sum of sine functions. Write out the first 6 terms in the series. Use technology to plot your series.

$$
\begin{aligned}
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \cdot \sin (k x) d x & =\frac{1}{\pi}\left[\frac{-x}{k} \cos (k x)+\frac{1}{k^{2}} \sin (k x)\right]_{-\pi}^{\pi} \\
& =\frac{-2}{k} \underbrace{\cos (k \pi)}_{\begin{array}{l}
1 \text { it } k \text { even } \\
-1 \text { if } k \text { odd }
\end{array}}=\frac{-2}{k}(-1)^{k}=\frac{2}{k}(-1)^{k+1}
\end{aligned}
$$

4. Derive an identity for cosine of the following form:

$$
m, n \in \mathbb{Z}
$$

$$
\int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x= \begin{cases}0 & \text { if } n \neq m \\ \pi & \text { if } n=m \neq 0 \\ 2 \pi & \text { if } n=m=0\end{cases}
$$

Also,

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \cos (n x) \sin (n x) d x=0 \\
& \quad \text { for all integers } n, m
\end{aligned}
$$

5. Can you write $f(x)=x$ as a sum of cosine functions? Why or why not?

Fourier series
The Fourier series of a function $f(x)$ defined on $-\pi \leq x \leq \pi$ is:

$$
f(x) \underset{\uparrow}{\sim} \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

"has the Fourier series"
Where

$$
\begin{aligned}
& a_{k}=\langle f, \cos (k x)\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x \\
& b_{k}=\langle f, \sin (k x)\rangle=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x
\end{aligned}
$$

Fourier Coefficients

Math 330

1. Find the Fourier series of $f(x)=|x|$. Then plot $f(x)$ together with partial sums of its Fourier series.

$$
\begin{aligned}
& a_{k:} \frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos (x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \cdot \cos (x) d x \\
& b_{0}: \frac{1}{\pi} \int_{-\pi}^{\pi}|x| \sin (e)|x| \cdot \cos (x) \text { has even symmetry } \\
& b_{k}: \quad \operatorname{since}|x| \cdot \sin (x) \text { has } \quad \text { odd symmetry }
\end{aligned}
$$

2. Find the Fourier series of $f(x)=\left\{\begin{array}{ll}1, & \text { if } x \geq 0 \\ -1, & \text { if } x<0\end{array}\right.$. Then plot $f(x)$ together with partial sums of its Fourier series.
3. Find the Fourier series of $f(x)=3 x-2$. Then plot $f(x)$ together with partial sums of its Fourier series.
4. What property of $f(x)$ guarantees that its Fourier series consists only of sine terms?
5. What property of $f(x)$ guarantees that its Fourier series consists of only cosine terms?
6. Based on the Fourier series that you have seen so far, make a conjecture about the points at which the Fourier series for $f(x)$ converges to $f(x)$.
