Heat Equation: $\quad \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$
$u(t, x)$ is temperature at position x, time t in a 1-D rod

Suppose $u(t, x)=e^{\lambda t} \sim(x)$ for some function $v(x)$.
Then $\frac{\partial u}{\partial t}=\lambda e^{\lambda t} v(x)$ and $\frac{\partial^{2} u}{\partial x^{2}}=e^{\lambda t} v^{\prime \prime}(x)$.
Heat equation $\quad \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$

$$
\begin{gathered}
x e^{\lambda t} v(x)=e^{\lambda t} v^{\prime \prime}(x) \\
\lambda v=v^{\prime \prime} O D E
\end{gathered}
$$

What are the solutions?
For what λ is there a solution?

Eigenvalues and Eigenfunction
Math 330
Consider the ODE:

$$
\frac{d^{2} v}{d x^{2}}=\lambda v
$$ eigenvalue problem

Characteristic equation:
(a) \ldots if $\lambda>0$?

$$
r^{2}-\lambda=0
$$

$$
\begin{array}{ll}
\text { Let } \omega=\sqrt{\lambda} & r= \pm \omega \\
& v(x)=c_{1} e^{-\omega x}+c_{2} e^{\omega x}
\end{array}
$$

(b) \ldots if $\lambda=0$?

$$
\begin{aligned}
& r=0 \\
& V(x)=c_{1} x+c_{2}
\end{aligned}
$$

(c) \ldots if $\lambda<0$?

$$
\text { Let } \omega=\sqrt{-\lambda} \text {. }
$$

Here, $r= \pm i \omega$.

$$
V^{\prime \prime}=\lambda v
$$

$$
V(x)=c_{1} \cos (\omega x)+c_{2} \sin (\omega x)
$$

2. Which of the solutions you found in \#1 satisfy the boundary conditions $v^{\prime}(0)=0$ and $v^{\prime}(\pi)=0$?
$\lambda>0$ (a) No eigenvalues, eigenfunction satisfy $B C$'s.
$\lambda=0$ (b) $v(x)=c_{1} x+c_{2}$ is solution ff $c_{1}=0$

$$
v(x)=c_{2}
$$(c) $v(x)=c_{1} \cos (\cos)+c_{2} \sin (\cos x)$

$$
c_{2}=0
$$

Need: $\cos (\omega x)$ to have horizontal tangent at $x=\pi$

Need

$$
\begin{aligned}
& \omega=1,2,3, \ldots \\
& \omega \in \mathbb{Z}^{+} \text {pos. integer }
\end{aligned}
$$

eigenvalues: $\lambda=-\omega^{2}$ squares of pos. integers eigenfunctions: $V(x)=c, \cos (\omega x)$
3. Which of the solutions you found in \#1 satisfy the periodic boundary conditions $v(-\pi)=v(\pi)$ and $v^{\prime}(-\pi)=v^{\prime}(\pi) ?$
(a) No solutions if $\lambda>0$.
(b) If $\lambda=0$, then $v(x)=C$ is the only solution.
(c) If $\lambda<0$, then

$$
v(x)=c_{1} \cos (\omega x)+c_{2} \sin (\omega x)
$$

is a solution for any positive integer ω.
In this case, $\lambda=-\omega^{2}$.

Eigen solutions: $\quad v_{k}(x)=\cos (k x)$

$$
\tilde{V}_{k}(x)=\sin (k x)
$$

for $k \in\{0,1,2,3, \ldots\}$

Orthogonality

Math 330

1. Let m and n be integers. Prove the identity

$$
\text { Here, } m \text { and } n \text { are integers! }
$$

$$
\begin{aligned}
& \int_{\cong}^{\pi} \sin (m x) \sin (n x) d x=\left\{\begin{array}{l}
0, \text { if } m \neq n, \\
\pi, \text { if } m=n \neq 0 .
\end{array}\right. \\
& -\pi \quad \operatorname{RECALL:} \sin (\alpha) \sin (\beta)=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
\end{aligned}
$$

Let $\alpha=m x, \beta=n x$. Then:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\frac{1}{2} \int_{-\pi}^{\pi}[\cos ((m-n) x)-\cos ((m+n) x)] d x \\
& \quad \text { if } \quad \begin{aligned}
m \neq n & =\frac{1}{2}\left[\frac{1}{m-n} \sin ((m-n) x)-\frac{1}{m+n} \sin ((m+n) x)\right]_{-\pi}^{\pi}=0
\end{aligned} \\
& \text { If } m=n \neq 0: \quad \int_{-\pi}^{\pi} \sin (m x) \sin (n x) d x=\int_{\pi}^{\pi} \sin ^{2}(n x) d x=\int_{-\pi}^{\pi} \frac{1-\cos (2 n x)}{2} d x=\pi
\end{aligned}
$$

We will continue this next time...
2. We would like to be able to write "any" function $f(x)$ as a sum of sine functions. Assume that $f(x)$ can be written as

$$
f(x)=\sum_{k=1}^{\infty} b_{k} \sin (k x) .
$$

Multiply both sides of the equation above by $\sin (m x)$, then integrate both sides from $-\pi$ to π with respect to x. Interchange integration and summation and solve for b_{k}.
3. Use your newfound power to write $f(x)=x$ as a sum of sine functions. Write out the first 6 terms in the series. Use technology to plot your series.
4. Derive an identity for cosine of the following form:

$$
\int_{-\pi}^{\pi} \cos (m x) \cos (n x) d x=\left\{\begin{array}{l}
n \neq m \\
\\
n=m \neq 0 \\
n=m=0
\end{array}\right.
$$

5. Can you write $f(x)=x$ as a sum of cosine functions? Why or why not?
