Wave Equation: d'Alembert's Solution

Math 330

1. Show that if F and G are any C^{2} functions, then $u(x, t)=F(x+c t)+G(x-c t)$ each solve the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial d x^{2}}$.
2. Consider the wave equation on an infinite string,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial d x^{2}}, \quad-\infty<x<\infty, t \geq 0
$$

with initial conditions $u(x, 0)=f(x)$ and $\frac{\partial u}{\partial t}(x, 0)=g(x)$.
(a) Consider the spacetime variables $\xi=x+c t$ and $\eta=x-c t$. Show that the $\operatorname{PDE} \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ transforms into $\frac{\partial^{2} u}{\partial \eta \partial \xi}=0$ with these new variables.
(b) Integrate twice to show that $\frac{\partial^{2} u}{\partial \eta \partial \xi}=0$ is solved by $u(\xi, \eta)=p(\xi)+q(\eta)$.
(c) Transform your solution $p(\xi)+q(\eta)$ back to the original coordinates x and t. Can you give a physical interpretation of this solution?
(d) Substitute your solution into the two initial conditions. Integrate the second expression from 0 to x. Use algebra to solve for functions p and q.
(e) Manipulate your expressions to arrive at the solution

$$
u(x, t)=\frac{1}{2}[f(x-c t)+f(x+c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\tau) d \tau .
$$

This is known as D^{\prime} 'Alembert's solution.
3. Consider the following wave equation on an infinite medium $(-\infty<x<\infty)$:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=\left\{\begin{array}{ll}
x, & 0<x<1 \\
2-x, & 1 \leq x<2, \\
0, & \text { otherwise }
\end{array} \quad \frac{\partial u}{\partial t}(x, 0)=0\right.
$$

(a) Sketch what you think the solution should look like at $t=0, t=1$, and $t=2$ (without actually finding the solution yet).
(b) Find d'Alembert's solution to this wave equation.
(c) Use software to plot d'Alembert's solution at $t=0, t=1$, and $t=2$ to verify your earlier plot.
4. Find d'Alembert's solution to the following wave equation on an infinite medium:

$$
\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=0, \quad \frac{\partial u}{\partial t}(x, 0)=\cos (x)
$$

Use software to plot the wave profile over time.
5. For each of the following wave equations on an infinite medium, sketch (by hand) the wave profiles at $t=0, t=1$, and $t=2$ without solving the equations. Check your sketch using software.
(a) $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=\left\{\begin{array}{ll}-1, & -1<x<0 \\ 1, & 0 \leq x<1 \\ 0, & \text { otherwise }\end{array} \quad, \quad \frac{\partial u}{\partial t}(x, 0)=0\right.$
(b) $\frac{\partial^{2} u}{\partial t^{2}}=\frac{1}{4} \frac{\partial^{2} u}{\partial x^{2}}, \quad u(x, 0)=\left\{\begin{array}{ll}x, & -1<x<1 \\ 0, & \text { otherwise }\end{array}, \quad \frac{\partial u}{\partial t}(x, 0)=0\right.$

