Uniform transport: $\quad \frac{\partial u}{\partial t}+{ }_{\uparrow} \frac{\partial u}{\partial x}=0$
speed of flow
Characteristic lines have slope c in the $t x$-plane $c=\frac{d x}{d t}$ if $x(t)$ is the position of a moving particle at time t

Transport with decay
4. Now consider the differential equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}+a u=0
$$

where a is a positive constant and c is any constant.
(a) Introduce the change of variable $\xi=x-c t$ as before. How does this simplify the differential equation?

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=\frac{\partial v}{\partial t} \text { as before. }
$$

So the transport with decay equation becomes

$$
\frac{\partial v}{\partial t}+a v=0 \quad \text { not: } u(t, x)=v(t, \xi)
$$

(b) Multiply your equation by the integrating factor $e^{a t}$. Show that $\frac{\partial}{\partial t}\left(e^{a t} v\right)=0$. What does this imply about $e^{a t} v$?

$$
\begin{aligned}
& \frac{\partial v}{\partial t} e^{a t}+a e^{a t} v=0 \\
& \frac{\partial}{\partial t}\left(e^{a t} v\right)=0
\end{aligned}
$$

Thus, $e^{a t} v(t, \xi)$ is const, wert. t. That is, $e^{a t} v=f(\xi)$
(c) Let $f(\xi)$ be a C^{1} function and suppose $e^{a t} v=f(\xi)$. Solve for v and transform your solution back to the original variables t and x.

$$
\text { thus: } \quad u(t, x)=e^{-a t} f(x-c t)
$$

PDF: $\quad \frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}+a u=0$

$$
v(t, \xi)=e^{-a t} f(\xi)
$$

(d) What initial value problem have you now solved? Give a physical interpretation for your solution.

$$
\text { IC: } \quad u(0, x)=f(x)
$$

5. Find the solution to the initial value problem

$$
\underbrace{\begin{array}{c}
\frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}+\stackrel{\downarrow}{u}=0,
\end{array}}_{\text {PD }} \underbrace{u(0, x)=\frac{1}{1+x^{2}}}_{\text {initial condition }} .
$$

Solution:

$$
u(t, x)=\frac{e^{-t}}{1+(x-2 t)^{2}}
$$

nonuniform transport
speed depends on position x

$$
\frac{\partial u}{\partial t}+c(x) \frac{\partial u}{\partial x}=0
$$

now $\frac{\partial x}{\partial t}=c(x)$ is the speed at position x
 example: $c(x)=\frac{1}{1+x^{2}}$
$4 \quad \int \frac{d x}{d t}=\frac{1}{1+x^{2}}$

$$
\sqrt{v}\left(1+x^{2}\right) d x=\int d t
$$

6. Consider the nonuniform transport equation

$$
x+\frac{1}{3} x^{3}=t+K
$$

$$
\frac{\partial u}{\partial t}+x \frac{\partial u}{\partial x}=0
$$

$$
\underbrace{\frac{1}{3} x^{3}+x-t}_{\text {cons }}=k
$$

(a) Sketch some slope lines tangent to the characteristic curves for this equation. What is the shape of the characteristic curves?

(b) The characteristic curves are given by what functions $x(t)$?

$$
\begin{aligned}
& \frac{d x}{d t}=x \\
& \int \frac{d x}{e_{c(x)}}=\int d t \Rightarrow e^{\ln |x|}=t+K \quad \quad \text { Characteristic variable: } \int \frac{d x}{c(x)}-t
\end{aligned}
$$

(c) Suppose $u(t, x)$ satisfies this differential equation. Describe in words how the graph of $u(t, x)$ changes as t increases. Optionally, you may assume an initial condition such as $u(0, x)=e^{-x^{2}}$.

$$
\begin{aligned}
& \text { All particles move away from the } \\
& \text { origin faster and faster over time }
\end{aligned}
$$

(d) Give an expression for the solution $u(t, x)$.

