Waves and Transport

Math 330

1. Consider the differential equation:

$$
\frac{\partial u}{\partial t}=0
$$

(a) If $u=u(t)$ is a function of t alone, then what are all solutions to the differential equation?
(b) If $u=u(t, x)$, then what are all solutions to the differential equation?
(c) Are all solutions to this differential equation constant in t ? That is, if $u(t, x)$ is it a solution, does it follow that $u\left(t_{1}, x\right)=u\left(t_{2}, x\right)$ if $t_{1} \neq t_{2}$?
2. Consider the transport equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0
$$

where c is some constant.
(a) Introduce the characteristic variable $\xi=x-c t$. That is, $u(t, x)=v(t, x-c t)=v(t, \xi)$. Use the multivariable chain rule to explain why

$$
\frac{\partial u}{\partial t}=\frac{\partial v}{\partial t}-c \frac{\partial v}{\partial \xi} \quad \text { and } \quad \frac{\partial u}{\partial x}=\frac{\partial v}{\partial \xi}
$$

(b) How does the transport equation simplify when expressed in terms of the characteristic variable? What functions v satisfy this equation?
(c) Transform your solution v back to the original variables t and x. Can you give a physical interpretation of this solution? (Hint: What is the role of t, x, and c ?)
3. Find the solution to the initial value problem

$$
\frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}=0, \quad u(0, x)=\frac{1}{1+x^{2}} .
$$

4. Now consider the differential equation

$$
\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}+a u=0
$$

where a is a positive constant and c is any constant.
(a) Introduce the change of variable $\xi=x-c t$ as before. How does this simplify the differential equation?
(b) Multiply your equation by the integrating factor $e^{a t}$. Show that $\frac{\partial}{\partial t}\left(e^{a t} v\right)=0$. What does this imply about $e^{a t} v$?
(c) Let $f(\xi)$ be a C^{1} function and suppose $e^{a t} v=f(\xi)$. Solve for v and transform your solution back to the original variables t and x.
(d) What initial value problem have you now solved? Give a physical interpretation for your solution.
5. Find the solution to the initial value problem

$$
\frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}+u=0, \quad u(0, x)=\frac{1}{1+x^{2}} .
$$

