1. Consider the differential equation $\frac{\partial u}{\partial t}=0$.
(a) If $u=u(t)$ is a function of t alone, then what are all solutions to the differential equation?
$\frac{d u}{d t}=0$ has solution $u(t)=c$ for any constant c.

INTEGRATING:

$$
\begin{aligned}
\int_{0}^{t} 0 d t & =\int_{0}^{t} \frac{d u}{d t} d t \\
C & =u(t)
\end{aligned}
$$

CONSIDER:

$$
u(t)=\left\{\begin{array}{rll}
1 & \text { if } & t>0 \\
-1 & \text { if } & t<0
\end{array}\right.
$$

satisfies $\frac{d u}{d t}=0$ on the domain

$$
(-\infty, 0) \cup(0, \infty)
$$

(b) If $u=u(t, x)$ then what are all solutions to the differential equation?
$u(t, x)=f(x)$ for some function $c(x)$
INTEGRATE WITH RESPECT TO t :

$$
O=\int_{0}^{t} \frac{\partial u(s, x)}{\partial t} d s=u(t, x)-u(0, x)
$$

Thus $u(t, x)=u(0, x)$ some function of x alone (say $f(x)$)
(c) Are all solutions to this differential equation constant in t ? That is, if $u(t, x)$ is a solution, does it follow that $u\left(t_{1}, x\right)=u\left(t_{2}, x\right)$ if $t_{1} \neq t_{2}$?

No - if the domain is disconnected, then $u(t, x)$ may take a different value on each connected component of the domain.

Example:

$$
u(t, x)=\left\{\begin{array}{rll}
x & \text { if } & t>0 \\
-x & \text { if } & t<0
\end{array}\right.
$$

Satisfies $\frac{\partial u}{\partial t}=0$ on the domain $\left\{(t, x) \in \mathbb{R}^{2} \mid t \neq 0\right\}$
2. Consider the transport equation $\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0$, where c is some constant.
(a) Introduce the characteristic variable $\xi=x-c t$. That is, $u(t, x)=v(t, x-c t)=v(t, \xi)$. Use the multivariable chain rule to explain why $\frac{\partial u}{\partial t}=\frac{\partial v}{\partial t}-c \frac{\partial v}{\partial \xi}$ and $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial \xi}$.

$$
\begin{aligned}
& \left(\begin{array}{c}
u(t, x)=v(t, \xi) \\
\left.\frac{\partial v}{\partial t}\right) \frac{\partial v}{\partial \xi} \\
\xi=x-c t
\end{array}\right. \\
& \frac{\partial \xi}{\partial t}=-c \left\lvert\, \int \frac{\partial \xi}{\partial x}=1\right. \\
& \text { differentiate w.r.t. } t \\
& \frac{\partial v}{\partial t}+\frac{\partial v}{\partial \xi} \cdot \frac{\partial \xi}{\partial t}=\frac{\partial v}{\partial t}-c \frac{\partial \xi}{\partial t} \\
& \text { differentiate w.r.t. } x \text { : } \\
& \frac{\partial v}{\partial \xi} \cdot \frac{\partial \xi}{\partial x}=\frac{\partial v}{\partial \xi} \cdot 1=\frac{\partial v}{\partial \xi}
\end{aligned}
$$

(b) How does the transport equation simplify when expressed in terms of the characteristic variable? What functions v satisfy this equation?

Transport equation: $\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}=0$
Substitute:

$$
\left(\frac{\partial v}{\partial t}-c \frac{\partial v}{\partial x}\right)+c\left(\frac{\partial v}{\partial x}\right)=0
$$

Simplify: $\quad \frac{\partial v}{\partial t}=0 \leftarrow$ same as in problem \#1
The solution may be any C^{1} function $v(t, \xi)=f(\xi)$ of ξ alone.
(c) Transform your solution v back to the original variables t and x. Can you give a physical interpretation of this solution? (Hint: What are the roles of t, x, and c ?)

We have: $u(t, x)=v(t, x-c t)=f(x-c t)$

This is a traveling wave of unchanging shape moving with
constant speed c.
3. Find the solution to the initial value problem $\frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}=0$ with $u(0, x)=\frac{1}{1+x^{2}}$.

Solution:

$$
u(t, x)=\frac{1}{1+(x-2 t)^{2}} \leftarrow \begin{aligned}
& \text { This is a function of } x-2 t \\
& \text { that satisfies } u(0, x)=\frac{1}{1+x^{2}} .
\end{aligned}
$$

4. Now consider the differential equation $\frac{\partial u}{\partial t}+c \frac{\partial u}{\partial x}+a u=0$, where a is a positive constant and c is any constant.
(a) Introduce the change of variable $\xi=x-c t$ as before. How does this simplify the differential equation?
We will continue this next class.
(b) Multiply your equation by the integrating factor $e^{a t}$. Show that $\frac{\partial}{\partial t}\left(e^{a t} v\right)=0$. What does this imply about $e^{a t} v$?
(c) Let $f(\xi)$ be a C^{1} function and suppose $e^{a t} v=f(\xi)$. Solve for v and transform your solution back to the original variables t and x.
(d) What initial value problem have you now solved? Give a physical interpretation for your solution.
5. Find the solution to the initial value problem $\frac{\partial u}{\partial t}+2 \frac{\partial u}{\partial x}+u=0$ with $u(0, x)=\frac{1}{1+x^{2}}$.
