T.

- 1. Consider the differential equation $\frac{\partial u}{\partial t} = 0$.
 - (a) If u = u(t) is a function of t alone, then what are all solutions to the differential equation?

$$\frac{du}{dt} = 0 \quad \text{has solution} \quad u(t) = c \quad \text{for any constant } c.$$

$$INTEGRATING:$$

$$\int_{0}^{t} 0 \, dt = \int_{0}^{t} \frac{du}{dt} \, dt$$

$$C = u(t)$$

$$C = u(t)$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

$$(t) = c \quad \text{for any constant } c.$$

(b) If u = u(t, x) then what are all solutions to the differential equation?

$$u(t, x) = f(x) \quad \text{for some function } c(x)$$

INTEGRATE WITH RESPECT TO t:

$$O = \int_{0}^{t} \frac{\partial u(s, x)}{\partial t} \, ds = u(t, x) - u(0, x)$$

Thus $u(t, x) = u(0, x)$ - some function of x alone
(say f(x))

(c) Are all solutions to this differential equation constant in *t*? That is, if u(t, x) is a solution, does it follow that $u(t_1, x) = u(t_2, x)$ if $t_1 \neq t_2$?

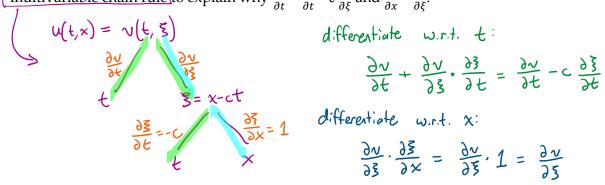
No - if the domain is disconnected, then u(t,x) may take a different value on each connected component of the domain.

EXAMPLE:

$$u(t,x) = \begin{cases} x & \text{if } t > 0 \\ -x & \text{if } t < 0 \end{cases}$$
Satisfies $\frac{\partial u}{\partial t} = 0$ on the domain $\{(t,x) \in \mathbb{R}^2 \mid t \neq 0\}$

2. Consider the transport equation $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$, where *c* is some constant.

(a) Introduce the characteristic variable $\xi = x - ct$. That is, $u(t, x) = v(t, x - ct) = v(t, \xi)$. Use the <u>multivariable chain rule</u> to explain why $\frac{\partial u}{\partial t} = \frac{\partial v}{\partial t} - c \frac{\partial v}{\partial \xi}$ and $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial \xi}$.



(b) How does the transport equation simplify when expressed in terms of the characteristic variable? What functions v satisfy this equation?

Transport equation: $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$ Substitute: $\left(\frac{\partial v}{\partial t} - c \frac{\partial v}{\partial x}\right) + c \left(\frac{\partial v}{\partial x}\right) = 0$ Simplify: $\frac{\partial v}{\partial t} = 0 \quad < \text{ same as in problem #1}$ The solution may be any C^1 function $v(t, \bar{s}) = f(\bar{s})$ of \bar{s} alone.

(c) Transform your solution v back to the original variables t and x. Can you give a physical interpretation of this solution? (Hint: What are the roles of t, x, and c?)

We have:
$$u(t,x) = v(t,x-ct) = f(x-ct)$$

This is a traveling wave of unchanging shape moving with
constant speed c.

3. Find the solution to the initial value problem $\frac{\partial u}{\partial t} + 2 \frac{\partial u}{\partial x} = 0$ with $u(0, x) = \frac{1}{1+x^2}$.

$$u(t,x) = \frac{1}{1 + (x - 2t)^2}$$
 This is a function of x-2t
that satisfies $u(0,x) = \frac{1}{1 + x^2}$

4. Now consider the differential equation $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} + au = 0$, where *a* is a positive constant and *c* is any constant.

(a) Introduce the change of variable $\xi = x - ct$ as before. How does this simplify the differential equation?

(b) Multiply your equation by the integrating factor e^{at} . Show that $\frac{\partial}{\partial t}(e^{at}v) = 0$. What does this imply about $e^{at}v$?

(c) Let $f(\xi)$ be a C^1 function and suppose $e^{at}v = f(\xi)$. Solve for v and transform your solution back to the original variables t and x.

(d) What initial value problem have you now solved? Give a physical interpretation for your solution.

5. Find the solution to the initial value problem $\frac{\partial u}{\partial t} + 2\frac{\partial u}{\partial x} + u = 0$ with $u(0, x) = \frac{1}{1+x^2}$.