ODE Review

Math 330

1. (a) What is a linear ordinary differential equation?

A linear ODE has the form $a_{n}(t) y^{(n)}(t)+\cdots+a_{1}(t) y^{\prime}(t)+a_{0}(t) y(t)=F(t)$ for some coefficient functions $a_{0}(t), \ldots, a_{n}(t)$ and some function $F(t)$.
(b) Give examples of two linear ODEs of different orders.

Answers will vary. For example:

$$
y^{\prime}(t)=2 t+1 \quad \text { and } \quad \frac{d^{2} y}{d t^{2}}+2 t \frac{d y}{d t}-y(t)=0
$$

(c) Do your examples have constant coefficients or variable coefficients?

If $a_{0}(t), \ldots, a_{n}(t)$ are constants, then the ODE has constant coefficients; otherwise it has variable coefficients. My first example in part (b) has constant coefficients, while my second example has variable coefficients.
(d) Are your examples homogeneous or nonhomogeneous?

If $F(t)=0$, then the equation is homogenous; otherwise it is nonhomogeneous. My first example in part (b) is nonhomogeneous, while my second example is homogeneous.
2. Find two linearly independent solutions $y(t)$ to the differential equation

$$
\frac{d^{2} y}{d t^{2}}+\frac{d y}{d t}-6 y=0 .
$$

Describe the behavior of your solutions as $t \rightarrow \infty$ and $t \rightarrow-\infty$.
The characteristic equation is $r^{2}+r-6=0$, which has distinct real roots $r=-3$ and $r=2$. This implies that there are linearly independent solutions $y_{1}(t)=e^{-3 t}$ and $y_{2}(t)=e^{2 t}$.
The solution $y_{1}(t)=e^{-3 t}$ goes to ∞ as $t \rightarrow-\infty$ and to 0 as $t \rightarrow \infty$.
The solution $y_{2}(t)=e^{2 t}$ goes to 0 as $t \rightarrow-\infty$ and to ∞ as $t \rightarrow \infty$.
3. Consider the differential equation

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=0
$$

(a) Find the general solution $y(t)$ to the differential equation.

The characteristic equation is $r^{2}+2 r+1=0$, which has a repeated root $r=-1$. This implies that there are linearly independent solutions $y_{1}(t)=e^{-t}$ and $y_{2}(t)=t e^{-t}$. The general solution is

$$
y(t)=c_{1} e^{-t}+c_{2} t e^{-t} .
$$

(b) Solve the initial value problem (IVP) given by the differential equation above and the initial conditions $y(0)=1$ and $y^{\prime}(0)=-1$.
The initial condition $y(0)=1$ implies that $1=c_{1}$, so $y(t)=e^{-t}+c_{2} t e^{-t}$. Thus $y^{\prime}(t)=-e^{-t}+c_{2}(1-t) e^{-t}$. The initial condition $y^{\prime}(0)=-1$ then implies that $-1=-1+c_{2}$, so $c_{2}=0$.
Therefore the particular solution to the IVP is

$$
y(t)=e^{-t} .
$$

4. Consider the differential equation

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}+5 y=0
$$

(a) Find the general solution $y(t)$ to the differential equation.

The characteristic equation is $r^{2}-4 r+5=0$, which has complex roots $r=2 \pm i$. This implies that there are linearly independent solutions $y_{1}(t)=e^{2 t} \sin (t)$ and $y_{2}(t)=e^{2 t} \cos (t)$. The general solution is

$$
y(t)=c_{1} e^{2 t} \sin (t)+c_{2} e^{2 t} \cos (t)
$$

(b) Solve the boundary value problem (BVP) given by the differential equation above and the boundary values $y(0)=0$ and $y(2)=1$.
The boundary condition $y(0)=0$ implies $0=c_{1} \cdot 0+c_{2} \cdot 1$, so $c_{2}=0$.
The boundary condition $y(2)=1$ then implies $1=c_{1} e^{4} \sin (2)$, so $c_{1}=\frac{1}{e^{4} \sin (2)} \approx 0.0201 \ldots$.
Thus, the particular solution to the BVP is

$$
y(t)=\frac{1}{e^{4} \sin (2)} e^{2 t} \sin (t)
$$

5. Find a solution $y(t)$ to the differential equation:

$$
\frac{d y}{d t}+2 t y=t
$$

One method: separation of variables

Move the $2 t y$ to the right side of the differential equation and factor to obtain

$$
\frac{d y}{d t}=t(1-2 y) .
$$

Separate variables and integrate as

$$
\int \frac{d y}{1-2 y}=\int t d t
$$

Evaluating the integrals, we obtain

$$
-\frac{1}{2} \ln |1-2 y|=\frac{1}{2} t^{2}+C .
$$

Multiply both sides by -2 , exponentiate to get rid of the log, and collect the constants:

$$
1-2 y=C^{\prime} e^{-t^{2}}
$$

Solving for y, we find

$$
y(t)=C^{\prime \prime} e^{-t^{2}}+\frac{1}{2}
$$

Another method: integrating factor (For a review of the integrating factor method, see this video.)
The integrating factor is $\mu(t)=e^{\int 2 t d t}=e^{t^{2}}$. Multiplying both sides of the ODE by this integrating factor, we obtain

$$
\frac{d y}{d t} e^{t^{2}}+2 t e^{t^{2}} y=t e^{t^{2}}
$$

The left side of this equation is the derivative of a product; specifically

$$
\frac{d}{d t}\left(y e^{t^{2}}\right)=t e^{t^{2}}
$$

Integrating both sides, we obtain

$$
y e^{t^{2}}=\int t e^{t^{2}} d t=\frac{1}{2} e^{t^{2}}+C
$$

The solution is then

$$
y(t)=\frac{1}{2}+C e^{-t^{2}}
$$

6. Find a homogeneous linear ODE whose general solution is:

$$
y(t)=c_{1} e^{-t}+c_{2} e^{2 t}+c_{3} t e^{2 t}
$$

We recognize that this solution arises from a homogeneous linear ODE whose characteristic equation has a root at $r=-1$ and a repeated root (multiplicity 2) at $r=2$. That is, the characteristic equation must be

$$
(r+1)(r-2)^{2}=r^{3}-3 r^{2}+4
$$

The ODE must then be

$$
\frac{d^{3} y}{d y^{3}}-3 \frac{d^{2} y}{d t^{2}}+4 y=0
$$

