
Homework 10
Math 330

Type (in LATEX) your solutions to the following problems. Submit them either on Moodle or in the
homework mailbox (RMS level 3, near the fireplace) by 4:00pm on Thursday, November 21.

1. Problem 6.2.6 — You may assume ∆x = ∆y.

2. Problem 6.3.7 — For this problem, modify the Mathematica notebook from class on Nov. 14.
For each part (a) – (d), include a plot your solution for at least one positive value of t. Discuss
the stability of each solution.

3. In class, we derived the partial difference equation for the heat equation

∂u

∂t
= k

∂2u

∂x2
, u(0, t) = 0, u(L, t) = 0, u(x, 0) = f(x)

using a forward difference in time for ∂u
∂t . This resulted in an explicit numerical scheme.

(a) This time, use a backward difference in time for ∂u
∂t . In your answer, write the implicit

scheme in the form
u
(m−1)
j = . . .

(b) Write the partial difference equation as a vector equation:

U(m−1) = AU(m)

(c) Modify the Mathematica code from class (on Nov. 14) to run the implicit scheme that you
devised in part (b). You may use the same initial condition as was used in for the explicit
scheme. Don’t forget about the command Inverse[A] to compute the inverse of a matrix.

(d) If you increase the step size in your code for the implicit scheme, you should see that the
numerical scheme is still stable (solutions do not grow without bound). Perform a stability
analysis (as in class) to show that solutions converge for all s. (This scheme is said to be
unconditionally stable.)

4. Consider the following population dispersion model with a growth term. (This model assumes
that the population has logistic growth and the spread of the population can be modeled by
diffusion.)

∂u

∂t
=
∂2u

∂x2
+ λu(1− u), 0 < x < 1, t > 0

u(0, t) = 0

u(1, t) = 0

u(x, 0) = sin(πx)

(a) Write the partial difference equation for the PDE using a forward difference approximation

for ∂u
∂t and a centered difference approximation for ∂2u

∂x2 . (This is similar to what we did
this in class, but now you must include the source term).

(b) Using Mathematica code from class as a template, find an approximate solution to the the
PDE above with λ = 1. Choose ∆t small enough so that you get a stable solution. What
happens as t→∞?



(c) Now let λ = 20. What happens as t→∞? What if you use the initial condition u(x, 0) =
0.1 sin(πx)?

(d) For the long-term behavior obtained in parts (b) and (c), explain in two sentences or less
why your answers seem reasonable (relate your solutions to the physical context).


