From last time:

THEOREM: The flip graph of any point set in the plane is connected.
Thus, any triangulation can be transformed into any other triangulation by edge flips.

Proof: Order points by x-coordinate, and let T_{*} be the triangulation obtained by the incremental algorithm.
Claim: Any other triangulation can be transformed into T_{x} by flips.
Proof by induction on the number of vertices n.
BASE CASE: $n=3$, the there is only one triangulation - Done. INDuction: Assume true for less than n point. $S=\left\{p_{1}, \ldots, p_{n}\right\}$ with triangulation T.
Consider the star of p_{n}, which is the set of triangles adjacent to p_{n}

In T, repeatedly flip edges connecting p_{n} to other vertices, until p_{n} is only connected
 to vertices visible to p_{n} on the convex hull of the other $n-1$ vertices.

This reduces the problem to the $n-1$ case.

Example:

Different triangulations of the same points can have different features

CD

Definition: Triangulation T_{1} is "fatter" than T_{2} if the sorted list of angles of T_{1} is lexicographically lager than that of T_{2}.
example:

angles: $30,60,60,60,75,75$

$$
15,15,30,30,135,135
$$

So, T_{1} is "fatter" than T_{2}, denoted $T_{1}>T_{2}$
lexicographically: apple, apricot, $\underset{\uparrow}{\underline{-}-\uparrow}$, bill
Dictionary Order
The DELAUNAY TRIANGULATION is the fattest triangulation.

THEOREM: A triangulation T is a Delaunay triangulation if no point of S is inside the circumcircle of any triangle in T. example:

Question:

Points P, Q fixed on

How does angle θ depend on the position of B ?
θ stays the same!

$$
\theta=\frac{\alpha}{2}
$$

