How Many triangles?
Assume we have n points, not all collinear.
If h points are on the convex hull and k are in the interior $(n=h+k)$, then each triangulation has $h-2+2 k$ triangles?

TRIANGULATION ALGORITHMS

1. TRIANCLE-SPLITTING:
\rightarrow Does not produce all triangulations:

\rightarrow Complexity: find the hall: $O(n \log n)$
triangulate the hull: $O(n)$
loop over all interior points: $O(n)$)
$\left.\begin{array}{ll}\text { find containing triangle: } & O(n) \\ \text { insert } 3 \text { edges: } & O(1)\end{array}\right\} O\left(n^{2}\right)$
2. INCREMENTAL ALGORITHM:

\rightarrow Cannot produce all triangulations:
\rightarrow Runtime: $O\left(n^{2}\right)$

Sort: $O(n \log n)$
add points incrementally: consider $\left.O_{n}\right)$ points for each, find visible edges of existing triangulation $-O(n)\}$

