CONVEX HULLS IN BD

For n points in 3D, the convex hull has at most $3 n$ edges and $2 n$ faces.

Incremental ALGORITHM
$O\left(n^{2}\right)$, but easy to implement
Start with four points; hull is a tetrahedron.
Add new points one by one. - Need to find which part of the hull is visible from a new point.

Suffices to determine which faces are visible from p.

1DEA: Face f is visible from point p if and only if $N \cdot(v-p)<0$, where N is a vector normal to f and N is any vertex of f.

DIVIDE AND CONQUER ALGORITHM
$O(n \log n)$ but merging two hulls is complicated in $3 D$
Merging can be accomplished in $O(n)$ time by a "wrapping" algorithm.

Deleting interior edges/taces is nontrivial - see O'Rourke and Edelsbrunner example

GRAHAM SCAN: No known 30 version!

GIFT WRAPP ING: $O(\cap f)$, where f is number of faces in hull

Chapter 3
Triangulations of points in the plane
A TRIANGULATION of a set of points S in the plane is a subdivision of the plane determined by a maximal set of noncrossing edges whose vertex set is S.

EXAMPLE:

$$
S=\text { set of purple points }
$$

PROBLEM: Triangulate the following 3×3 lattice.
How many triangles in a triangulation?
How many triangulations are possible?

