LOWER BOUND OF COMPLEXITY FOR RD
convex hull algorithms

Convex hull of n points in a plane cannot be found faster than $O(n \log n)$ time.

Notation: $\Omega(n \log n)$ is the lower bound for complexity of hull algorithm.
The same lower bound holds if we just want to identify hull points, even without putting them in order.

DIVIDE AND CONQUER ALGORITM
Recursive algorithm: algorithm that calls itself
(similar to proof by induction)

PSEVDOCODE: sort the points by x-coordinate
$A=$ left half of the points
$B=$ right half of the points
how to do this? $\begin{aligned} & \text { find convex hull of } A \\ & \text { find convex hull of } B\end{aligned}$

This is the complicated part merge the two hulls together

MERGING Two Hulls:

Identify the rightmost point of A and the leftmost point of B.
"Walk" the edge down until all right turns are eliminated. Similarly, "walk" the edge up.

Overall Complexity of divide -and conquer
Sort points: $O(n \log n)$
$\left.\begin{array}{l}\text { Divide points in half } \log _{2}(n) \text { times } \\ \text { Merge back together takes } O(n) \text { time }\end{array}\right] O(n \log n)$
Overall complexity: $O(n \log n)$

