Downsides of using slope in calculations

- slope is not defined for vertical lines
- numerical (in) stability
- Speed (?)

Left Of queries
Decide whether point c is left of a directed segment $a b$.

Vectors in the plane

$$
\begin{aligned}
& \overrightarrow{a b}=\left\langle b_{1}-a_{1}, b_{2}-a_{2}, 0\right\rangle \\
& \overrightarrow{a c}=\left\langle c_{1}-a_{1}, c_{2}-a_{2}, 0\right\rangle
\end{aligned}
$$

Recall: cross product $\vec{V} \times \vec{W}$ gives the (signed) area of a parallelogram

Cross product:

$$
\begin{aligned}
\overrightarrow{a b} \times \overrightarrow{a c} & =\left\langle b_{1}-a_{1}, b_{2}-a_{2}, 0\right\rangle \times\left\langle c_{1}-a_{1}, c_{2}-a_{2}, 0\right\rangle=\left|\begin{array}{ccc}
b_{1}-a_{1} & b_{2}-a_{2} & 0 \\
c_{1}-a_{1} & c_{2}-a_{2} & 0
\end{array}\right| \\
& =\left\langle 0,0,\left(b_{1}-a_{1}\right)\left(c_{2}-a_{2}\right)-\left(b_{2}-a_{2}\right)\left(c_{1}-a_{1}\right)\right\rangle
\end{aligned}
$$

signed area of parallelogram
t if c is left of $\overrightarrow{a b}$

- if c is right of $\overrightarrow{a b}$

0 if c is collinear with $\overrightarrow{a b}$

