computa tional complexity
Suppose we have an algorithm that operates on input of size n. We say the algorithm is $O(f(n))$ if the runtime "big-O of $f(n)$ "
is not greater than $c \cdot f(n)$ for some constant c (and large n).

EXAMPLES: $O(1)$ constant time e.g. adding two numbers

for i from 1 to n : for j from 1 to i :

Incremental algorithm for Convex hulls
INPUT: set S of n points in the plane, given by coordinates OUTPUT: list L containing vertices of conv (S), in counterclockwise order PSEUDOCODE: 1. SORT S by x-coordinate
2. Take first 3 points. Let H_{3} be these points in counterclockwise order
3. For $k=4$ to n :

Can we give detailed instructions on remove all points now in the interior, how to do this?

Insert point k into H_{k-1}, and forming H_{k}

4. Set L equal to H_{n}

