LAST TIME: scissors congruence of polyhedra
Dehn invariant of polyhedron $P: \quad D_{f}(P)=\sum_{e \in P} l(e) \cdot f(\phi(e))$
THEOREM: The Dehn invariant is invariant under dissections. That means: If P is dissected into polyhedra $P_{1}, P_{2}, \ldots, P_{n}$,

$$
\text { the: } \quad D_{f}(P)=D_{f}\left(P_{1}\right)+D_{f}\left(P_{2}\right)+\cdots+D_{f}\left(P_{n}\right)
$$

sketch of
proof: relies on the fact that dihedral functions are additive: $f\left(\phi_{1}+\phi_{2}\right)=f\left(\phi_{1}\right)+f\left(\phi_{2}\right)$

edge e contributes to the Dehn invariant:

$$
l(e) \cdot f\left(90^{\circ}\right)=l(e)\left(f\left(45^{\circ}\right)+f\left(45^{\circ}\right)\right)
$$

Any new edge through a face of P contributes zero, since all dihedral angles of such edge sum to $\frac{\pi}{2}$.
Any new edge in the interior of P also contributes zero, since its dihedral angles sum to π.

COROLLARY: Let P and Q be polyhedra, and f any dihedral function. If $D_{f}(P) \neq D_{f}(Q)$, then P and Q are not scissors congruent.

What does this tell us about the cube and regular tetrakdion?

P

$$
D_{f}(P)=0
$$

$$
D_{f}(Q) \neq 0 \quad \text { if } \quad \underset{\left.\substack{\text { not a rational } \\ \text { of } \frac{1}{\pi} \\ \arccos \left(\frac{1}{3}\right.}\right)}{\operatorname{anctiple}}
$$

They are not scissors congruent!
THEOREM (sydles, 1965): Polyhedral P and Q are scissors congruent if they have the same volume and the same Dehn invariant: $D_{f}(P)=D_{f}(Q)$ for every d-function f.
example:

CONVEXITY:
A region R is CONVEX if, for any two points a and b in R, the line segment $a b$ is also in R.

convex

not convex

Let S be a set of points. The CONVEX HULL of S, denoted $\operatorname{conv}(S)$, is the intersection of all convex regions containing S.

APPLICATIONS:
collision detection robot motion planning geographic information systems image processing
optimization (simplex algorithm)
spread of epidemics
cooking

QUESTION: Given coordinates of a set of points S in the plane, how would you program a computer to find the convex hull conv (S)?

