(1),	, 1	20.4		•											
HW		rea	grad	e.			_		_				7		
	You	May	re	csubmit	Sol	utions	70	# (,	,5, 1	.10,	1.15	te	or o	regr	ade.
	Due	e Mon	day,	Feb. 2	5.	Turn	in	orig	inal	and	. re	νοίον	•		
K)	otes"														
10	0100			induc								1			
		Tt	YOU	want	a	diagonal	66	ween	9	hole	Ver	tex	and	an	. 1
			ex.	terior	Vertex,	expl	ain	how	λοο	Kno	SW)	such	a	arayon	а
			ех	.रिट.											
		For	1.10,	induction	۸ ٥٨	the nu	mber	6f	ver	tices	îs	a q	ood	idea.	
													١		
		Tor	1.10,	the	JORMUIA.									_2	
								absolu outside	te val	lue is		1		\ <u>;</u>	
								outside	e the				~		
											- Xn	rs n N		,	
										to	the.	Sum			
CC		^		D 10	POL	INIC C									
20	(22	SOK2		ONG		INCE									
J	_ast	· tim	e:	Any h	ه صد	olygons	of	the	ی ر	ame	area	a	e		
-				Any to scissor	، ص ع	ongrient.	,	(183	205						
Do	es	a	S	imilar	the	rem	hold		3	D?					
				hedra								er i	((are	COAD	ruent
1									, ,	176	iney	301			
		· Hill	bert's	Thin	d Pro	blem	(190	00)							

	3. The Equality of the Volumes of Two Tetrahedra of Equal Bases and Equal Altitudes. In two letters to Gerling, Gauss* expresses his regret that certain theorems of solid geometry depend upon the method of exhaustion, i. e., in modern phraseology, upon the axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in particular the theorem of Euclid, that triangular pyramids of equal altitudes are to each other as their bases. Now the analogous problem in the plane has been solved.† Gerling also succeeded in proving the equality of volume of symmetrical polyhedra by dividing them into congruent parts. Nevertheless, it seems to me probable that a general proof of this kind for the theorem of Euclid just mentioned is impossible, and it should be our task to give a rigorous proof of its impossibility. This would be obtained, as soon as we succeeded in specifying two tetrahedra of equal bases and equal altitudes which can in no way be split up into congruent tetrahedra, and which cannot be combined with congruent tetrahedra, and which cannot be combined with congruent tetrahedra.† Lead of the Equal Altitudes of Equal bases and equal altitudes which can in no way be split up into congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two polyhedra which themselves could be split up into congruent tetrahedra.†	n of hat
· Also p	cropored by Kretkowski in 1882, solved by Birkenmajer (work rediscovered later)	
DIHED RAL a polyhedr	on that meet along an edge.	
examples.	cube regular tetrahedron	
e	1 1 1 7 1 2 90° angle 3	
notation:	$\phi(e) = \frac{\pi}{2}$ or 90° dihedral angle is $\arccos(\frac{1}{3})$ or about 70.53°	
	NOTE: $\arccos\left(\frac{1}{3}\right)$ is not of the form $\frac{a}{b}$ for integers a,b	,π

DEHN	INVARIANT:
	$f: \mathbb{R} \to \mathbb{Q}$ be such that:
	$f(x+y) = f(x) + f(y)$ for any $x, y \in \mathbb{R}$ dihedral function"
(ط)	$f(qx) = qf(x)$ for any $x \in \mathbb{R}$, $q \in \mathbb{Q}$ "d-function"
	$f(\pi) = 0$
	E: $f(\theta) = 0$ if θ is any rational multiple of π
	$f\left(\frac{a}{b}\pi\right) = \frac{a}{b}f(\pi) = \frac{a}{b}0 = 0$
For an	edge e of polyhedron P, let l(e) be the legth
of.	e, and let $\phi(e)$ be the dihedral angle along e.
Call	$l(e)$. $f(\phi(e))$ the MASS of edge e.
DEHN	INVARIANT: for a polyhedron P and d-function f,
	$D_{f}(P) = \sum_{e \in P} l(e) \cdot f(\phi(e))$
	Sun of masses of all edges of P using d-function f
exa	nple: P is a cube: $D_f(P) = \sum_{e \in P} l(e) \cdot f(\phi(e)) = 0$
	$f\left(\frac{\pi}{2}\right) = 0$