A point x in a polygon P is VISIBLE to a point y if the line segment $x y$ lies in P.
Note that the segment may intersect the boundary ∂P.
bound ry
A set of guards (ie. points) covers the polygon if every point in the polygon is visible to some guard.

ART GALLERY PROBLEM: Determine the minimum number of guards sufficient to cover any n-walled art gallery (ie. polygon with n vertices).

- First proposed Victor klee in 1973
- Spurred a lot of research. Joseph O'Rourke published a book on Art Gallery Therenens in 1986.
 1 guard

We think that $\left\lfloor\frac{n}{3}\right\rfloor$ guards should be sufficient.

$$
\text { "floor" function: greatest integer } \leq \frac{n}{3}
$$

Proof: Let polygon P have n vertices.
Consider a triangulation of P.
The vertices may be 3-colored

so that any two vertices connected bu an ono of P or a diaconal in the

So that any two vertices connected by an edge of P or a diagonal in the triangulation have different colors.
Proof by induction: Base Case: $n=3$ vertices
Just color 1 vertex each color.
Induction: Assume that any polygon/triangulation with $n-1$ vertices can be 3 -cloned. ($n>3$)

Since $n>3$, we know the polygon has an ear. Call the ear $a b c$, with b the tip.

Removing the ear produces a polygon p^{\prime} with $n-1$ vertices. (Vertex b removed.)
By induction hypothesis, P^{\prime} can be 3-colored.
Then color vertex b differently from vertices a and c. Thus, polygon P can be 3 -colored.

Place guards on the vertices colored with the least-used color. This color has at most $\left\lfloor\frac{n}{3}\right\rfloor$ vertices. (If it had more, then each color would have more than $\left\lfloor\frac{n}{3}\right\rfloor$ vertices, which would reque more than n vertices total.)

Thus, every triangle is covered by guards, and so is all of P.
Problems:

1. Find a polygon P and a placement of guards such that the boundary ∂P is covered, but not every point of P is covered.
2. What is the minimum number of guards sufficient to Cover any polygon with n vertices and all right angles?
"orthogonal polygons" \square

