Last Time: If polygon P has n vertices, then every triangulation of P has $n-2$ triangles.

Today: How many triangulations does a polygon have?

DEF: If a, b, c are consecutive vertices of a polygon and a, c is a diagonal, then a, b, c is called an EAR.

Cor. 1.9: Every polygon with more than 3 vertices has at least two ears with non-adjacent tips.

CONVEX POLYGON: A polygon such that the line connecting any two vertices is inside the polygon.

QUESTION: If P is a convex polygon with n vertices, how many triangulations does P have?

$$
n=3
$$

$n=5 ? \quad n=6 ?$

1 triangulation

$$
n=4
$$

2 triangulations

$$
n=5
$$

5 triangulations

$$
n=6
$$

THEOREM: If P is a convex polygon with $n+2$ vertices, then the number of triangulations is the Catalan number

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \quad\binom{2 n}{n}=\frac{(2 n)!}{n!n!}
$$

Check: 3 vertices $\longrightarrow n=1: \quad C_{1}=\frac{1}{1+1}\binom{2}{1}=\frac{1}{2} \cdot \frac{2!}{1!1!}=\frac{2}{2}=1$
4 vertices $\rightarrow n=2: \quad C_{2}=\frac{1}{2+1}\binom{4}{2}=\frac{1}{3} \cdot \frac{4!}{2!2!}=\frac{1}{3} \cdot \frac{24}{2 \cdot 2}=2$
5 vertices $\rightarrow n=3: \quad C_{3}=\frac{1}{3+1}\binom{6}{3}=\frac{1}{4} \cdot \frac{6!}{3!3!}=\frac{1}{4} \cdot \frac{720}{6 \cdot 6}=5$

POLYHEDRA: tetrahedralization - partion the polyhedra into tetrahedra

- Not every polyhedra has a tetrahedralization.

example: Schönhardt polyhedron
- Two tetrahedralizations of the same polyhedra might have different numbers of tetrahedra.
example:

