Section 4.6 - 1. Suppose X_1 and X_2 are iid Unif[0,1]. Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$. - (a) Find the region of possible values of the pair (Y_1, Y_2) . (b) Find the inverse transformation functions v_1 and v_2 such that $X_1 = v_1(Y_1, Y_2)$ and $X_2 = v_2(Y_1, Y_2)$. (c) Use the tranformation theorem to find the joint pdf of Y_1 and Y_2 . | 2. | Let X_1 and X_2 have joint density $f(x_1, x_2) = \frac{1}{x_1^2 x_2^2}$ for $x_1 \ge 1$ and $x_2 \ge 1$. Let $Y_1 = X_1 X_2$ and $Y_2 = \frac{X_1 X_2}{X_1 X_2}$ | <u>1</u> . | |----|--|------------| | | $\mathcal{U}_1\mathcal{U}_2$ | . •2 | (a) Show that the region of positive joint density for Y_1 and Y_2 is given by $1 \le Y_1$ and $\frac{1}{Y_1} \le Y_2 \le Y_1$. (b) Find the joint pdf of Y_1 and Y_2 . 3. Let (X,Y) be a random point in the plane, where X and Y are independent standard normal random variables. Let (R,Θ) be the polar coordinates of (X,Y). Find the joint density of R and Θ . Then find the marginal densities of R and Θ . What is the probability that (X,Y) lies inside a circle of radius 1 centered at the origin?