1. Let X_{1} and X_{2} have joint density $f\left(x_{1}, x_{2}\right)=3 x_{1}$, for $0 \leq x_{2} \leq x_{1} \leq 1$. Let $Y=X_{1}-X_{2}$. Use the following steps to find the density of Y.
(a) Identify the possible values of Y.
(b) Sketch the graph $Y=y$ in the $x_{1} x_{2}$-plane.
(c) Find the region R in the $x_{1} x_{2}$-plane where $Y \leq y$.
(d) Find the cdf $F_{Y}(y)$ by integrating the joint density of X_{1} and X_{2} over the region R.
(e) Differentiate $F_{Y}(y)$ to obtain the density $f_{Y}(y)$.
2. Let X_{1} and X_{2} be uniformly distributed on the region of the $x_{1} x_{2}$-plane defined by $0 \leq x_{1}, 0 \leq x_{2}$, and $x_{1}+x_{2} \leq 1$. Let $Y=X_{1}+X_{2}$. Find the density of Y.
3. The joint density of X_{1} and X_{2} is $f\left(x_{1}, x_{2}\right)=4 e^{-2\left(x_{1}+x_{2}\right)}$. Find the density of $Y=\frac{X_{1}}{X_{1}+X_{2}}$.
4. Let the point (X, Y) be randomly selected in the first quadrant of the $x y$-plane according to the density $f(x, y)=\frac{4}{\pi} e^{-x^{2}-y^{2}}$. Let R be the distance from (X, Y) to the origin. Find the density of R.
