Math 262

Section 4.4

- 1. Let X and Y have joint density $f(x, y) = \frac{1}{2}$ for $0 \le x \le y \le 2$.
 - (a) Suppose you know that $X = \frac{2}{3}$. What does $f(\frac{2}{3}, y)$ tell you about the density of Y, given that $X = \frac{2}{3}$?
 - (b) Suppose you know that $X = x_0$. What is then the density of Y?
 - (c) In part (b), you found the conditional density $f_{Y|X}(y \mid x_0)$. How does this relate to the joint density f(x, y) and the marginal density $f_X(x)$?
 - (d) If $X = \frac{2}{3}$, then what is the probability that $Y \le 1$?
 - (e) What is the expected value of Y given that $X = x_0$?

- 2. The joint pdf of X and Y is f(x, y) = 3x, for $0 \le y \le x \le 1$.
 - (a) What is the conditional distribution of X given Y = y?

(b) What is $E(X \mid Y = y)$?

(c) What is Var(X | Y = y)?

3. For continuous random variables X and Y, show that $E(E(X \mid Y)) = E(X)$.

4. The number of eggs N found in nests of a certain species of turtles has a Poisson distribution with mean λ . Each egg has probability p of being viable, and this event is independent from egg to egg. Find the mean and the variance of the number of viable eggs per nest.

★ BONUS: If X and Y are independent binomial random variables with identical parameters n and p, calculate the conditional expected value of X given that X + Y = m.