1. Let X and Y be independent uniform variables on $[0,1]$, and let $W=X+Y$.
(a) What do you think the pdf of W will look like? Make a guess. Draw a sketch. Discuss with your neighbor.
(b) Use convolution to find a formula for the pdf of W.
2. Use convolution to write an integral that gives the pdf of the sum of three independent Unif $[0,1]$ random variables. How could you evaluate this integral?
3. Let $X_{k} \sim N(k, 1)$ for $k \in\{1,2, \ldots, m\}$, and suppose all of the X_{k} are independent.
(a) What is the distribution of $X_{1}+X_{2}+\cdots+X_{m}$?
(b) What is the distribution of $X_{1}+2 X_{2}+3 X_{3}+\cdots+m X_{m}$?
4. Use moment generating functions to justify the following statements.
(a) The sum of n independent exponential random variables with common parameter λ has a gamma distribution with parameters $\alpha=n$ and $\beta=1 / \lambda$.
(b) The sum of n independent geometric random variables with common parameter p has a negative binomial distribution with parameters $r=n$ and p.
mgf reference:
$\begin{array}{ll}\text { Normal: } e^{\mu t+\sigma^{2} t^{2} / 2} & \text { Exponential: } \frac{\lambda}{\lambda-t} \\ \text { Geometric: } \frac{p e^{t}}{1-(1-p) e^{t}} & \text { Negative Binomial: }\left(\frac{p e^{t}}{1-(1-p) e^{t}}\right)^{r}\end{array}$
