Section 3.4.1

- 1. Suppose that emails arrive in your inbox according to a Poisson process with rate 2 emails per hour. Then the time between successive emails is an exponential random variable with mean 30 minutes.
 - (a) What is the probability that an email arrives in the next 20 minutes?
 - (b) What is the probability that you don't receive any emails in the next hour?
 - (c) What is the standard deviation of the time until the next email?
- 2. Let $X \sim \text{Exp}(\lambda)$ and 0 < a < b.
 - (a) What is $P(X \ge a)$?
 - (b) Show that P(X > b | X > a) = P(X > b a).
 - (c) What other distribution satisfies the equality in (b)?
 - (d) The property in (b) is special, in the sense that it doesn't hold for most random variables. For example, if $U \sim \text{Unif}[0, 10]$, show that $P(U > 4 | U > 3) \neq P(U > 1)$.

3. What is the moment generating function of an exponential random variable?

4. Let $X \sim \text{Exp}(1)$. Find a formula for $E(X^n)$ for positive integers n.

- ★ BONUS: For a positive continuous random variable X with pdf f and cdf F, the hazard rate is defined by $h(t) = \frac{f(t)}{1-F(t)}$.
 - (a) Interpret the hazard rate as a conditional probability. Hint: $P(t < X < t + \Delta t) \approx f(t)\Delta t$

(b) Compute the hazard rate for $X \sim \text{Exp}(\lambda)$.