1. Let X_{1} and X_{2} be iid $\operatorname{Exp}\left(\frac{1}{10}\right) . \longrightarrow f(x)=\frac{1}{10} e^{-x / 10}$ for $x>0, F(x)=1-e^{-x / 10}$ for $x>0$
(a) What is the pdf of $Y_{1}=\min \left(X_{1}, X_{2}\right)$?

$$
\begin{array}{r}
g_{1}(y)=n[1-F(y)]^{n-1} f(y)=2\left[1-\left(1-e^{-y / 10}\right)\right]^{1}\left(\frac{1}{10} e^{-y / 10}\right)=2\left[e^{-y / 10}\right]\left(\frac{1}{10} e^{-y / 10}\right)=\frac{1}{5} e^{-y / 5} \text { for } y>0 \\
Y_{1} \sim \operatorname{Exp}\left(\lambda=\frac{1}{5}\right) 9
\end{array}
$$

(b) What is the expected value of Y_{1} ?

$$
E\left(Y_{1}\right)=5
$$

(c) What is the pdf of $Y_{2}=\max \left(X_{1}, X_{2}\right)$? What is $E\left(Y_{2}\right)$?

$$
\begin{aligned}
& g_{2}(y)=n[F(y)]^{n-1} f(y)=2\left[1-e^{-y / 10}\right]^{1}\left(\frac{1}{10} e^{-y / 10}\right)=\frac{2}{10}\left(e^{-y / 10}-e^{-y / 5}\right)=\frac{1}{5}\left(e^{-y / 0}-e^{-y / 5}\right) \text { for } y>0 \\
& E\left(Y_{2}\right)=\int_{0}^{\infty} y \cdot \frac{1}{5}\left(e^{-y / 10}-e^{-y / 5}\right) d y=15
\end{aligned}
$$

$$
\text { pdf of } I_{1} \text { and } Y_{2}: \quad \operatorname{Plot}[\{\operatorname{Exp}[-y / 5] / 5,(\operatorname{Exp}[-y / 10]-\operatorname{Exp}[-y / 5]) / 5\},\{y, 0,30\}]
$$

2. Let X_{1}, X_{2}, X_{3} be fid $\operatorname{Exp}\left(\frac{1}{10}\right)$. What is the expected value of the sample median?

$$
\begin{aligned}
& \text { sample median is } Y_{2} \quad(n=3, i=2) \\
& g_{2}(y)=\frac{3!}{1!1!}\left[1-e^{-y / 10}\right]^{1}\left[e^{-y / 10}\right]^{1}\left(\frac{1}{10} e^{-y / 10}\right)=\frac{6}{10}\left[1-e^{-y / 10}\right] e^{-y / 5}=\frac{3}{5}\left(e^{-y / 5}-e^{-3 y / 10}\right) \text { for } y>0 \\
& E\left(Y_{2}\right)=\int_{0}^{\infty} y \cdot \frac{3}{5}\left(e^{-y / 5}-e^{-3 y / 10}\right) d y=\frac{25}{3}
\end{aligned}
$$

3. Let X_{1}, X_{2}, X_{3} be aid Unif[0,1]. What is the probability that the sample median is between $\frac{1}{4}$ and $\frac{3}{4}$?

$$
n=3 \text {, Unif }[0,1] \text { has pdf } f(x)=1, \text { cdf } F(x)=x \text {, for } 0 \leq x \leq 1
$$

density of the sample median:

$$
\begin{gathered}
g_{2}(y)=\frac{3!}{(2-1)!(3-2)!} y(1-y)=6 y(1-y) \text { for } 0 \leq y \leq 1 \\
\text { Thus, } P\left(\frac{1}{4}<Y_{2}<\frac{3}{4}\right)=\int_{\frac{1}{4}}^{\frac{3}{4}}\left(6 y-6 y^{2}\right) d y=\left[3 y^{2}-2 y^{3}\right]_{\frac{1}{4}}^{\frac{3}{4}}=\frac{11}{16}
\end{gathered}
$$

4. Let n be a positive odd integer and let $X_{1}, X_{2}, \ldots, X_{n}$ be id Unif[0,1]. What is the smallest n such that the sample median is between 0.4 and 0.6 with probability greater than $\frac{1}{2}$?
median is Y_{i} with $i=\frac{n+1}{2}$
density: $g_{i}(y)=\frac{n!}{(i-1)!(n-i)!} y^{i-1}(1-y)^{n-i}=\frac{n!}{\left(\frac{n-1}{2}\right)!^{2}} y^{\frac{n-1}{2}}(1-y)^{\frac{n-1}{2}}$
Use Mathematica to compute $\int_{0.4}^{0.6} g_{i}(y) d y$ for various n.
The smallest odd n such that $\int_{0.4}^{0.6} g_{i}(y) d y>\frac{1}{2}$ is $n=11$.
5. Let X_{1}, \ldots, X_{8} be id Unif[0,1].
(a) Make a plot of the pdfs of all eight order statistics.
```
ln[10]= n=8;
    pdfs = Table[n!/ ((i-1) ! (n-i) !) y^(i-1) (1-y)^(n-i), {i, 1, n}]
Out[17]={8(1-y)}\mp@subsup{}{}{7},56(1-y\mp@subsup{)}{}{6}y,168(1-y\mp@subsup{)}{}{5}\mp@subsup{y}{}{2},280(1-y\mp@subsup{)}{}{4}\mp@subsup{y}{}{3},280(1-y\mp@subsup{)}{}{3}\mp@subsup{y}{}{4},168(1-y\mp@subsup{)}{}{2}\mp@subsup{y}{}{5},56(1-y)\mp@subsup{y}{}{6},8\mp@subsup{y}{}{7}
```


(b) What are the expected values of all eight order statistics?

$$
E\left(Y_{i}\right)=\frac{i}{q}
$$

