1. Suppose that $X_{1}$ and $X_{2}$ are aid $\operatorname{Unif}[0,1]$. Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=X_{1}-X_{2}$.
(a) Find the region of possible values of the pair $\left(Y_{1}, Y_{2}\right)$.

Note that the transformation is linear: $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right]$
Linear transformations map parallelograms to parallelograms.
The point $\left(X_{1}, X_{2}\right)$ lies in a square. Let's see where the transformation maps this square:


$$
\begin{aligned}
& (0,0) \longmapsto(0,0) \\
& (1,0) \longmapsto(1,1) \\
& (1,1) \longmapsto(2,0) \\
& (0,1) \longmapsto(1,-1)
\end{aligned}
$$


(b) Find the inverse transformation functions $v_{1}$ and $v_{2}$ such that $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$.

Invert the transformation matrix: $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]^{-1}=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2}\end{array}\right]$
So $\left[\begin{array}{l}X_{1} \\ X_{2}\end{array}\right]=\left[\begin{array}{rr}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}Y_{1} \\ Y_{2}\end{array}\right]$, which means

$$
X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)=\frac{Y_{1}+Y_{2}}{2} \quad \text { and } \quad X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)=\frac{Y_{1}-Y_{2}}{2}
$$

(c) Use the transformation theorem to find the joint pdf of $Y_{1}$ and $Y_{2}$.

Jacobian matrix: $\quad M=\left[\begin{array}{ll}\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\ \frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2}\end{array}\right]$
So: $\quad \operatorname{det}(M)=\frac{1}{2}\left(-\frac{1}{2}\right)-\frac{1}{2}\left(\frac{1}{2}\right)=-\frac{1}{2}$
The joint density of $Y_{1}$ and $Y_{2}$ is:

$$
g\left(y_{1}, y_{2}\right)=f\left(v_{1}\left(y_{1}, y_{2}\right), v_{2}\left(y_{1}, y_{2}\right)\right) \cdot|\operatorname{det}(M)|=1 \cdot\left|\frac{1}{2}\right|=\frac{1}{2}
$$

on the region found in part (a).
2. Let $X_{1}$ and $X_{2}$ have joint density $f\left(x_{1}, x_{2}\right)=\frac{1}{x_{1}^{2} x_{2}^{2}}$ for $x_{1} \geq 1$ and $x_{2} \geq 1$. Let $Y_{1}=X_{1} X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{2}}$.
(a) Show that the region of positive joint density for $Y_{1}$ and $Y_{2}$ is given by $1 \leq Y_{1}$ and $\frac{1}{Y_{1}} \leq Y_{2} \leq Y_{1}$.


Note that $Y_{1}$ may be any value $y_{1} \geq 1$.
For any fixed value $y_{1} \geq 1$ :

- the value $y_{2}=\frac{x_{1}}{x_{2}}$ is smallest if $x_{1}=1$, meaning $y_{2}=\frac{1}{y_{1}}$.
- the value $y_{2}=\frac{x_{1}}{x_{2}}$ is largest if $x_{2}=1$, meaning $y_{2}=y_{1}$.

Thus, the region of positive joint density for $Y_{1}$ and $Y_{2}$ is bounded by
$y_{1} \geq 1$ and $\frac{1}{y_{1}} \leq y_{2} \leq y_{1}$.

(b) Find the joint pdf of $Y_{1}$ and $Y_{2}$.

Find the inverse transformation:

$$
\begin{array}{ll}
Y_{1} Y_{2}=\left(X_{1} X_{2}\right)\left(\frac{X_{1}}{X_{2}}\right)=X_{1}^{2}, & \text { so } \quad X_{1}=\sqrt{Y_{1} Y_{2}} . \quad \text { Thus } \quad v_{1}\left(y_{1}, y_{2}\right)=\sqrt{y_{1} y_{2}} \\
\frac{Y_{1}}{Y_{2}}=\frac{X_{1} X_{2}}{\frac{X_{1}}{X_{2}}}=X_{2}^{2}, & \text { so } \quad X_{2}=\sqrt{\frac{Y_{1}}{Y_{2}}} \quad \text { Thus } \quad v_{2}\left(y_{1}, y_{2}\right)=\sqrt{\frac{y_{1}}{y_{2}}}
\end{array}
$$

The Jacobian matrix:

The Transformation Theorem says:

$$
g\left(y_{1}, y_{2}\right)=f\left(\sqrt{\sqrt{y_{1}} y_{2}}, \sqrt{\frac{y_{1}}{y_{2}}}\right) \cdot\left|\frac{-1}{2 y_{2}}\right|=\frac{1}{\left(y_{1} y_{2}\right)\left(\frac{y_{2}}{y_{2}}\right.} \cdot \frac{1}{2 y_{2}}=\frac{1}{22_{1}^{2} y_{2}} \text { for } 1 \leq y_{1}, \frac{1}{y_{1}} \leq y_{2} \leq y_{1} \text {. }
$$

3. Let $(X, Y)$ be a random point in the plane, where $X$ and $Y$ are independent standard normal random variables. Let $(R, \Theta)$ be the polar coordinates of $(X, Y)$. Find the joint density of $R$ and $\Theta$. Then find the marginal densities of $R$ and $\Theta$. What is the probability that the point $(X, Y)$ lies in a circle of radius 1 centered at the origin?

Transformations:

$$
(X, Y) \overbrace{X=R \cdot \cos \theta, \quad Y=R \cdot \sin \theta}^{R=\sqrt{X^{2}+Y^{2}}, \quad \theta=\arctan \left(\frac{X}{Y}\right)}(R, \theta)
$$



Region: $X$ and $Y$ may be any real numbers, so $R \geq 0$ and $0 \leq \theta \leq 2 \pi$.
Joint Density: $N(0,1)$ has pdf $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$
$X$ and $Y$ are independent, so $f(x, y)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2}$

$$
f(x, y)=\frac{1}{2 \pi} e^{-\left(x^{2}+y^{2}\right) / 2}
$$

From the video for today, the transformation theorem gives:

$$
g(r, \theta)=f(r \cdot \cos \theta, r \cdot \sin \theta) \cdot r
$$

Thus: $g(r, \theta)=\frac{1}{2 \pi} e^{-\left(r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta\right) / 2} \cdot r$

$$
g(r, \theta)=\frac{r}{2 \pi} e^{-r^{2} / 2} \quad \text { for } \quad r \geq 0, \quad 0 \leq \theta<2 \pi
$$

Marginal densities:
of $\theta: \quad g_{\theta}(\theta)=\int_{0}^{\infty} \frac{r}{2 \pi} e^{-r^{2} / 2} d r=\left.\frac{1}{2 \pi} e^{-r^{2} / 2}\right|_{r=0} ^{r=\infty}=\frac{1}{2 \pi} \quad$ for $\quad 0 \leq \theta \leq 2 \pi$
of $R: \quad g_{r}(\theta)=\int_{0}^{2 \pi} \frac{r}{2 \pi} e^{-r^{2} / 2} d \theta=\left.\frac{r}{2 \pi} e^{-r^{2} / 2} \theta\right|_{\theta=0} ^{\theta=2 \pi}=r e^{-r^{2} / 2}$ for $r \geq 0$.
$R$ has a Rayleigh distribution
Inside circle:

$$
P(R<1)=\int_{0}^{1} r e^{-r^{2} / 2} d r=-\left.e^{-r^{2} / 2}\right|_{r=0} ^{r=1}=1-e^{-1 / 2} \approx 0.393
$$

