$$
\left(X_{1}, X_{2}\right) \xrightarrow[r_{v_{1}, v_{2}}]{u_{1}, u_{2}}\left(Y_{1}, Y_{2}\right)
$$

Bivariate Transformation Theorem
Let X_{1} and X_{2} have joint density $f\left(x_{1}, x_{2}\right)$.
Let $Y_{1}=u_{1}\left(X_{1}, X_{2}\right)$ and $Y_{2}=u_{2}\left(X_{1}, X_{2}\right)$,
with inverse transformation $X_{1}=v_{1}\left(Y_{1}, Y_{2}\right)$ and $X_{2}=v_{2}\left(Y_{1}, Y_{2}\right)$.
Let M be the Jacobian matrix:

$$
M=\left[\begin{array}{ll}
\frac{\partial v_{1}}{\partial y_{1}} & \frac{\partial v_{1}}{\partial y_{2}} \\
\frac{\partial v_{2}}{\partial y_{1}} & \frac{\partial v_{2}}{\partial y_{2}}
\end{array}\right]
$$

Then the joint density of Y_{1} and Y_{2} is given by

$$
g\left(y_{1}, y_{2}\right)=f(\underbrace{v_{1}\left(y_{1}, y_{2}\right)}, \underbrace{v_{2}\left(y_{1}, y_{2}\right)}) \cdot|\operatorname{det}(M)| .
$$

1-var theorem: $f_{y}(y)=f_{x}\left(h^{\uparrow}(y)\right) \cdot\left|h^{\prime}(y)\right|$
(1) $X_{1}, X_{2} \sim U_{n i} i[0,1]$
invert:

Fix a value $y,>1$.
y_{2} is smallest when $x_{1}=1$, so $y_{2}=\frac{1}{x_{2}}=\frac{1}{y_{1}}$

$$
y_{1}=x_{1} x_{2}=1 \cdot x_{2}
$$

y_{2} is largest when $x_{2}=1$, so $y_{2}=\frac{x_{1}}{1}=\frac{y_{1}}{1}$

$$
y_{1}=x_{1} x_{2}=x_{1}-1
$$

