1. Let X_{1} and X_{2} be uniformly distributed over the region of the $x_{1} x_{2}$-plane defined by $0 \leq x_{1}, 0 \leq x_{2}$, and $x_{1}+x_{2} \leq 1$. Let $Y=X_{1}+X_{2}$. Use the following steps to find the density of Y.
(a) Sketch the region of positive density for X_{1} and X_{2} in the $x_{1} x_{2}$-plane. Identify the possible values of Y.

$$
\begin{aligned}
& \text { Note that } X_{1} \text { and } X_{2} \text { are both nonnegative } \\
& \text { and } Y=X_{1}+X_{2} \leq 1 \\
& \text { Thus, } O \leq Y \leq 1 .
\end{aligned}
$$

(b) Let y be a possible value of Y. Sketch the graph $Y=y$ in the $x_{1} x_{2}$-plane.

$$
\text { Fix } y \in[0,1] \text {. Then } y=x_{1}+x_{2} \text {, so } x_{2}=y-x_{2}
$$

(c) Find the region R in the $x_{1} x_{2}$-plane where $Y \leq y$.

$$
\begin{aligned}
& R \text { is the triangle with vertices } \\
& (0,0),(y, 0) \text {, and }(0, y) \text {, shaded at right. }
\end{aligned}
$$

(d) Find the $\operatorname{cdf} F_{Y}(y)$ by integrating the joint
 density of X_{1} and X_{2} over the region R.

$$
\begin{aligned}
F_{Y}(y)=P(Y & \left.\leq X_{1}+X_{2}\right)=\iint_{R} f\left(x_{1}, x_{2}\right) d A=\iint_{R} 2 d A \\
& =2 \cdot \text { Area }(R)=2 \cdot \frac{y^{2}}{2}=y^{2}
\end{aligned}
$$

(e) Differentiate $F_{Y}(y)$ to obtain the density $f_{Y}(y)$.

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y}\left(y^{2}\right)=2 y \text { for } 0 \leq y \leq 1
$$

2. Let X_{1} and X_{2} have joint density $f\left(x_{1}, x_{2}\right)=3 x_{1}$, for $0 \leq x_{2} \leq x_{1} \leq 1$. Let $Y=X_{1}-X_{2}$. Use the following steps to find the density of Y.
(a) Identify the possible values of Y.

$$
0 \leq Y \leq 1
$$

(b) Sketch the graph $Y=y$ in the $x_{1} x_{2}$-plane.

$$
\text { Fix } y \in[0,1] \text {. Then } y=x_{1}-x_{2} \text {, or } x_{2}=x_{1}-y \text {. }
$$

(c) Find the region R in the $x_{1} x_{2}$-plane where $Y \leq y$.

$$
Y=X_{1}-X_{2} \leq y \text { in the region } R \text { shaded blue. }
$$

(d) Find the $\operatorname{cdf} F_{Y}(y)$ by integrating the joint density of X_{1} and X_{2} over the region R.

$$
\begin{aligned}
F_{Y}(y) & =P(Y \leq y)=P\left(X_{1}-x_{2} \leq y\right)=\iint_{R} f\left(x_{1}, x_{2}\right) d A=1-\iint_{S} f\left(x_{1}, x_{2}\right) d A \\
& =1-\int_{y}^{1} \int_{0}^{x_{1}-y} 3 x_{1} d x_{2} d x_{1}=1-\int_{y}^{1} 3 x_{1}\left(x_{1}-y\right) d x_{1} \\
& =1-\left[x_{1}^{3}-\frac{3}{2} x_{1}^{2} y\right]_{x_{1}=y}^{x_{1}=1}=1-\left[\left(1-\frac{3}{2} y\right)-\left(y^{3}-\frac{3}{2} y^{3}\right)\right]=\frac{3}{2} y-\frac{1}{2} y^{3} \frac{x_{1}-y}{x_{1}} 1
\end{aligned}
$$

One way to do this integral in Mathematica:

$$
\begin{aligned}
& \operatorname{In}[1]:=1 \text { - Integrate }[3 * x 1,\{x 1, y, 1\} \\
& \text { Out [1] }=\frac{3 y}{2}-\frac{y^{3}}{2}
\end{aligned}
$$

(e) Differentiate $F_{Y}(y)$ to obtain the density $f_{Y}(y)$.

$$
f_{Y}(y)=\frac{d}{d y}\left[\frac{3}{2} y-\frac{1}{2} y^{3}\right]=\frac{3}{2}-\frac{3}{2} y^{2} \quad \text { for } \quad 0 \leq y \leq 1
$$

3. The joint density of X_{1} and X_{2} is $f\left(x_{1}, x_{2}\right)=4 e^{-2\left(x_{1}+x_{2}\right)}$. Find the density of $Y=\frac{X_{1}}{X_{1}+X_{2}}$. First, note that $0 \leq Y \leq 1$.
For $y \in[0,1]: \quad Y=y \Rightarrow \frac{x_{1}}{x_{1}+x_{2}}=y \Rightarrow X_{1}=x_{1} y+x_{2} y$

$$
\Rightarrow \quad \frac{X_{1}(1-y)}{y}=X_{2}
$$

$$
Y \leq y \quad \Rightarrow \quad x_{1} \frac{1-y}{y} \leq x_{2}
$$

Then: $F_{Y}(y)=\iint_{R} f\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\int_{0}^{\infty} \int_{\frac{1-y}{y} x_{1}}^{\infty} 4 e^{-2 x_{1}-2 x_{2}} d x_{2} d x_{1}=\int_{0}^{\infty} 2 e^{-2 x / y} d x_{1}$
inner integral:

$$
\int_{\frac{1-y}{y} x_{1}}^{\infty} e^{-2 x_{2}} d x_{2}=-\left.\frac{1}{2} e^{-2 x_{2}}\right|_{\frac{1-y}{y} x_{1}} ^{\infty}=\frac{1}{2} e^{-2 x_{1} \frac{1-y}{y}}
$$

$$
F_{Y}(y)=-\left.y e^{-2 x_{1} / y}\right|_{0} ^{\infty}=y \quad \text { so } \quad F_{y}(y)=y \quad \text { for } 0 \leq y \leq 1
$$

Thus, $f_{Y}(y)=1$ for $0 \leq y \leq 1$.
NOTE: X_{1}, X_{2} are lid $\operatorname{Exp}(2)$.
Y is the proportion of the sum $X_{1}+X_{2}$ due to X_{1}.
4. Challenge: Let the point (X, Y) be randomly selected in the first quadrant of the $x y$-plane according to the density $f(x, y)=\frac{4}{\pi} e^{-x^{2}-y^{2}}$. Let R be the distance from (X, Y) to the origin. Find the density of R.

First, note that $0 \leq R<\infty$.
Let $r>0$. Then:

Let S be the set of points in the first quadrant at distance less than or equal to r from the origin:

$$
\begin{aligned}
F_{R}(r)= & P(R \leq r)=P((X, Y) \in S)=\iint_{S} f(x, y) d y d x \\
= & \iint_{S} \frac{4}{\pi} e^{-x^{2}-y^{2}} d y d x= \\
& \int_{0}^{\frac{\pi}{2}} \int_{0}^{r} \frac{4}{\pi} e^{-t^{2}} t d t d \theta=1-e^{-r^{2}} \\
& \text { Using polar coordinates }(t, \theta) \\
& \text { (radius } t \text { since } r \text { is already used) }
\end{aligned}
$$

Thus: $f_{R}(r)=\frac{d}{d r} F_{R}(r)=\frac{d}{d r}\left(1-e^{-r^{2}}\right)=2 r e^{-r^{2}}$ for $r \geq 0$.

