Math 262

Section 4.6

- 1. Let X_1 and X_2 be uniformly distributed on the region of the x_1x_2 -plane defined by $0 \le x_1$, $0 \le x_2$, and $x_1 + x_2 \le 1$. Let $Y = X_1 + X_2$. Use the following steps to find the density of Y.
 - (a) Sketch the region of positive density for X_1 and X_2 in the x_1x_2 -plane. Identify the possible values of Y.

(b) Let y be a possible value of Y. Sketch the graph Y = y in the x_1x_2 -plane.

(c) Find the region R in the x_1x_2 -plane where $Y \leq y$.

(d) Find the cdf $F_Y(y)$ by integrating the joint density of X_1 and X_2 over the region R.

(e) Differentiate $F_Y(y)$ to obtain the density $f_Y(y)$.

- 2. Let X_1 and X_2 have joint density $f(x_1, x_2) = 3x_1$, for $0 \le x_2 \le x_1 \le 1$. Let $Y = X_1 X_2$. Use the following steps to find the density of Y.
 - (a) Sketch the region of positive density for X_1 and X_2 . Identify the possible values of Y.

(b) Sketch the graph Y = y in the x_1x_2 -plane.

(c) Find the region R in the x_1x_2 -plane where $Y \leq y$.

(d) Find the cdf $F_Y(y)$ by integrating the joint density of X_1 and X_2 over the region R.

(e) Differentiate $F_Y(y)$ to obtain the density $f_Y(y)$.

Here are two more practice problems you can do on other paper.

- 3. The joint density of X_1 and X_2 is $f(x_1, x_2) = 4e^{-2(x_1+x_2)}$ for $X_1 > 0$ and $X_2 > 0$. Find the density of $Y = \frac{X_1}{X_1+X_2}$.
- 4. Challenge: Let the point (X, Y) be randomly selected in the first quadrant of the *xy*-plane according to the density $f(x, y) = \frac{4}{\pi}e^{-x^2-y^2}$. Let *R* be the distance from (X, Y) to the origin. Find the density of *R*.