1. Simulate 10,000 averages, each of k samples from a Unif[0,1] distribution. Make a histogram of the 10,000 averages. Start with $k=1$ and then try larger values of k. How does the shape of the histogram depend on k ?

2. Repeat the previous simulation, but now replace Unif[0,1] with a different distribution of your choice. What is the shape of the histogram? How does it depend on k ?

3. Let $X_{1}, X_{2}, \ldots, X_{300}$ be iid random variables with mean μ_{X} and standard deviation σ_{X}. Also let $T=X_{1}+X_{2}+\cdots+X_{300}$ and $\bar{X}=\frac{T}{300}$.
(a) What are $\mu_{T}, \sigma_{T}, \mu_{\bar{X}}$, and $\sigma_{\bar{X}}$?

$$
\begin{array}{ll}
\mu_{T}=300 \mu_{x} & \sigma_{T}=\sigma_{x} \sqrt{300} \\
\mu_{\bar{x}}=\mu_{x} & \sigma_{\bar{x}}=\frac{\sigma_{x}}{\sqrt{300}}
\end{array}
$$

(b) What distributions are good approximations for T and \bar{X} ?

$$
T \text { is approx. } N\left(300 \mu_{x}, \sigma_{x} \sqrt{300}\right), \quad \bar{X} \text { is approx } N\left(\mu_{x}, \frac{\sigma_{x}}{\sqrt{300}}\right)
$$

4. Use the Convolve function in Mathematic to plot the pdf of $X_{1}+X_{2}+\cdots+X_{n}$, where each $X_{i} \sim \operatorname{Unif}[0,1]$ and $n \in\{1,2,3,4,5,6\}$. Compare each pdf with the pdf of a normal distribution.
See Mathematica notebook.
5. A farm packs tomatoes in crates. Individual tomatoes have mean weight of 10 ounces and standard deviation of 3 ounces. Estimate the probability that a crate of 40 tomatoes weighs between 380 and 410 ounces.

$$
\begin{gathered}
T_{40} \text { is approximately } N(400,18.97) \\
P\left(380<T_{40}<410\right) \approx 0.555 \\
R: \quad \operatorname{pnorm}(410,400,18.97)-\operatorname{pnorm}(380,400,18.97)
\end{gathered}
$$

