Math 262

1. Simulate 10,000 averages, each of k samples from a Unif $[0,1]$ distribution. Make a histogram of the 10,000 averages. Start with $k=1$ and then try larger values of k. How does the shape of the histogram depend on k ?
Here is some code for making such a histogram in Mathematica:
```
averages = Table[ Mean[ RandomVariate[ UniformDistribution[], k ] ], 10000 ]
Histogram[averages]
```

Here is similar code in R :

```
averages <- replicate( 10000, mean(runif(k)) )
hist(averages)
```

Sketch the shape of your histograms:
2. Repeat the previous simulation, but now replace Unif $[0,1]$ with a different distribution of your choice. What is the shape of the histogram? How does it depend on k ?
3. Let $X_{1}, X_{2}, \ldots, X_{300}$ be iid random variables with mean μ_{X} and standard deviation σ_{X}. Also let $T=X_{1}+X_{2}+\cdots+X_{300}$ and $\bar{X}=\frac{T}{300}$.
(a) What are the values of $\mu_{T}, \sigma_{T}, \mu_{\bar{X}}$, and $\sigma_{\bar{X}}$?
(b) What distributions are good approximations for T and \bar{X} ?
4. Use the Convolve function in Mathematica to plot the pdf of $X_{1}+X_{2}+\cdots+X_{n}$, where each $X_{i} \sim$ $\operatorname{Unif}[0,1]$ and $n \in\{1,2,3,4,5,6\}$. Compare each pdf with the pdf of a normal distribution.
5. A farm packs tomatoes in crates. Individual tomatoes have mean weight of 10 ounces and standard deviation of 3 ounces. Estimate the probability that a crate of 40 tomatoes weighs between 380 and 410 ounces.

