1. Let X and Y have joint density $f(x, y)=\frac{1}{2}$ for $0 \leq x \leq y \leq 2$.
(a) Sketch the joint density of X and Y.

(b) What is the marginal density of X ?

$$
f_{x}(x)=\int_{x}^{2} f(x, y) d y=\int_{x}^{2} \frac{1}{2} d y=\left.\frac{y}{2}\right|_{y=x} ^{y=2}=\frac{2-x}{2} \text { for } 0 \leq x \leq 2
$$

(c) Suppose you know that $X=\frac{2}{3}$. What does $f\left(\frac{2}{3}, y\right)$ tell you about the density of Y, given that $X=\frac{2}{3}$?

If $x=\frac{2}{3}$, then $f\left(\frac{2}{3}, y\right)=\frac{1}{2}$ for $\frac{2}{3} \leq y \leq 2$.
Since $f\left(\frac{2}{3}, y\right)$ is constant, the density of $Y \left\lvert\, X=\frac{2}{3}\right.$ is constant for $\frac{2}{3} \leq y \leq 2$, which is an interval of length $\frac{4}{3}$.
Thus, $f_{y \mid x}\left(y \left\lvert\, \frac{2}{3}\right.\right)=\frac{3}{4}$ for $\frac{2}{3} \leq y \leq 2$. That is, $Y \sim U_{n} f\left[\frac{2}{3}, 2\right]$.

(d) Suppose you know that $X=x_{0}$. What is then the density of Y ?

In this case, $I \sim U_{\text {rif }}\left[x_{0}, 2\right]$, so $f_{Y \mid X}\left(y \mid x_{0}\right)=\frac{1}{2-x_{0}} \quad$ for $\quad x_{0} \leq y \leq 2$
(e) In part (d), you found the conditional density $f_{Y \mid X}\left(y \mid x_{0}\right)$. How does this relate to the joint density $f(x, y)$ and the marginal density $f_{X}(x)$?

$$
\text { Observe that } f_{y \mid X}\left(y \mid x_{0}\right)=\frac{1}{2-x_{0}}=\frac{\frac{1}{2}}{\frac{2-x_{0}}{2}}=\frac{f\left(x_{0}, y\right)}{f_{X}\left(x_{0}\right)}
$$

(f) If $X=\frac{2}{3^{\prime}}$, then what is the probability that $Y \leq 1$?

$$
\begin{aligned}
& P\left(Y \leq 1 \left\lvert\, X=\frac{2}{3}\right.\right)=\int_{\frac{2}{3}}^{1} f_{Y \mid X}\left(y \left\lvert\, \frac{2}{3}\right.\right) d y=\int_{\frac{2}{3}}^{1} \frac{3}{4} d y=\frac{3}{4} \cdot \frac{1}{3}=\frac{1}{4} \\
& \\
& \text { Use the conditional density of } Y \text { given } X=\frac{2}{3} .
\end{aligned}
$$

(g) What is the expected value of Y given that $X=x_{0}$?

$$
\text { mean of Unit }\left[x_{0}, 2\right]
$$

$$
E\left(Y \mid X=x_{0}\right)=\int_{x_{0}}^{2} y \cdot f_{Y \mid X}\left(y \mid x_{0}\right) d y=\int_{x_{0}}^{2} y \cdot \frac{1}{2-x_{0}} d y=\left.\frac{1}{2\left(2-x_{0}\right)} y^{2}\right|_{y=x_{0}} ^{y=2}=\frac{4-x_{0}^{2}}{2\left(2-x_{0}\right)}=\frac{2+x_{0}}{2}
$$

2. The joint pdf of X and Y is $f(x, y)=3 x$, for $0 \leq y \leq x \leq 1$.
(a) What is the conditional distribution of X given $Y=y$?

$$
\begin{aligned}
& f_{Y}(y)=\int_{y}^{1} 3 x d x=\left.\frac{3}{2} x^{2}\right|_{x=y} ^{x=1}=\frac{3}{2}\left(1-y^{2}\right) \text { for } 0 \leq y \leq 1 \\
& f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{3 x}{\frac{3}{2}\left(1-y^{2}\right)}=\frac{2 x}{1-y^{2}} \quad \begin{array}{c}
0 \leq y \leq x \leq 1 \\
\text { fixed }
\end{array}
\end{aligned}
$$

(b) What is $E(X \mid Y=y)$?

$$
E(X \mid Y=y)=\int_{y}^{1} x \cdot \frac{2 x}{1-y^{2}} d x=\frac{2}{1-y^{2}} \int_{y}^{1} x^{2} d x=\left.\frac{2}{1-y^{2}} \cdot \frac{x^{3}}{3}\right|_{x=y} ^{x=1}=\frac{2}{1-y^{2}}\left(\frac{1}{3}-\frac{y^{3}}{3}\right)=\frac{2\left(1-y^{3}\right)}{3\left(1-y^{2}\right)}
$$

(c) What is $\operatorname{Var}(X \mid Y=y)$?

$$
\begin{aligned}
& E\left(X^{2} \mid Y=y\right)=\int_{y}^{1} x^{2} \cdot \frac{2 x}{1-y^{2}} d x=\left.\frac{1}{1-y^{2}} \cdot \frac{x^{4}}{2}\right|_{x=y} ^{x=1}=\frac{1-y^{4}}{2\left(1-y^{2}\right)}=\frac{1}{2}\left(1+y^{2}\right) \\
& \operatorname{Var}\left(X^{2} \mid Y=y\right)=\frac{1}{2}\left(1+y^{2}\right)-\left(\frac{2\left(1-y^{3}\right)}{3\left(1-y^{2}\right)}\right)^{2}=\frac{(y-1)^{2}\left(y^{2}+4 y+1\right)}{18(1+y)^{2}}
\end{aligned}
$$

3. For continuous random variables X and Y, show that $E(E(X \mid Y))=E(X)$.

$$
\begin{aligned}
& E(X \mid Y=y)=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x=\int_{-\infty}^{\infty} x \cdot \frac{f(x, y)}{f_{Y}(y)} d x, \text { which is a function of } y \\
& \text { outside: expectation of a function of } Y \\
& E(E(X \mid Y))=\int_{-\infty}^{\infty} E(X \mid Y=y) f_{Y}(y) d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot \frac{f(x, y)}{f_{y}(y)} d x f_{y}(y) d y \\
&=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x, y) d y d x=\int_{-\infty}^{\infty} x\left[\int_{-\infty}^{\infty} f(x, y) d y d x\right. \\
&=\int_{-\infty}^{\infty} x \cdot f_{x}(x) d x=E(X)
\end{aligned}
$$

4. The number of eggs N found in a nest of a certain species of turtle has a Poisson distribution with mean λ. Each egg has a probability p of being viable, and this event is independent from egg to egg. Find the mean and variance of the number of viable eggs per nest.

$$
\begin{aligned}
& \text { rvs: } \quad N \sim \operatorname{Poisson}(\lambda), \quad X=\text { number of Viable eggs } \sim \operatorname{Bin}(N, p) \\
& \text { mean: } E(X)=E(\underbrace{E(X \mid N)}_{E(X \mid N)})=E(N p)=p E(N)=p \lambda
\end{aligned} \quad \begin{aligned}
\operatorname{Variance:~} \operatorname{Var}(X) & =\operatorname{Var}(E(X \mid N))+E(\operatorname{Var}(X \mid N))=\operatorname{Var}(N p)+E(N p(1-p)) \\
& =p^{2} \operatorname{Var}(N)+p(1-p) E(N)=p^{2} \lambda+p(1-p) \lambda=p^{2} \lambda-p^{2} \lambda+p \lambda=p \lambda
\end{aligned}
$$

BONUS: If X and Y are independent binomial random variables with identical parameters n and p, calculate the conditional expected value of X given that $X+Y=m$.

First, compute the conditional pmf of X given that $X+Y=m$.

$$
\begin{aligned}
P(X=k \mid X+Y=m) & =\frac{P(X=k \text { and } X+Y=m)}{P(X+Y=m)}=\frac{P(X=k) P(Y=m-k)}{P(X+Y=m)} \\
& =\frac{\binom{n}{k} p^{k}(1-p)^{n-k} \cdot\binom{n}{m-k} p^{m-k}(1-p)^{n-m+k}}{\binom{2 n}{m} p^{m}(1-p)^{2 n-m}} \quad\left[\begin{array}{c}
\text { For the denominator, note that } \\
X+Y \sim \operatorname{Bin}(2 n, p)
\end{array}\right] \\
& =\frac{\binom{n}{k}\binom{n}{m-k}}{\binom{2 n}{m}}
\end{aligned}
$$

This is a hypergeometric probability: the probability of k successes in a sample of size m from a population with n successes and n failures.

So the conditional distribution of X, given that $X+Y=m$, is hypergeometric, and its mean is $E(X \mid X+Y=m)=\frac{m}{2}$.

