1. Let X and Y have joint density $f(x, y)=\frac{1}{2}$ for $0 \leq x \leq y \leq 2$.
(a) Sketch the joint density of X and Y.
(b) What is the marginal density of X ?
(c) Suppose you know that $X=\frac{2}{3}$. What does $f\left(\frac{2}{3}, y\right)$ tell you about the density of Y, given that $X=\frac{2}{3}$?
(d) Suppose you know that $X=x_{0}$. What is then the density of Y ?
(e) In part (d), you found the conditional density $f_{Y \mid X}\left(y \mid x_{0}\right)$. How does this relate to the joint density $f(x, y)$ and the marginal density $f_{X}(x)$?
(f) If $X=\frac{2}{3}$, then what is the probability that $Y \leq 1$?
(g) What is the expected value of Y given that $X=x_{0}$?
2. The joint pdf of X and Y is $f(x, y)=3 x$, for $0 \leq y \leq x \leq 1$.
(a) What is the conditional distribution of X given $Y=y$?
(b) What is $E(X \mid Y=y)$?
(c) What is $\operatorname{Var}(X \mid Y=y)$?
3. For continuous random variables X and Y, show that $E(E(X \mid Y))=E(X)$.
4. The number of eggs N found in nests of a certain species of turtles has a Poisson distribution with mean λ. Each egg has probability p of being viable, and this event is independent from egg to egg. Find the mean and the variance of the number of viable eggs per nest.
\star BONUS: If X and Y are independent binomial random variables with identical parameters n and p, calculate the conditional expected value of X given that $X+Y=m$.
